
WLAN Toolbox™
User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

WLAN Toolbox™ User's Guide
© COPYRIGHT 2015–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
October 2015 Online only New for Version 1.0 (Release 2015b)
March 2016 Online only Revised for Version 1.1 (Release 2016a)
September 2016 Online only Revised for Version 1.2 (Release 2016b)
March 2017 Online only Revised for Version 1.3 (Release 2017a)
September 2017 Online only Revised for Version 1.4 (Release 2017b)
March 2018 Online only Revised for Version 1.5 (Release 2018a)
September 2018 Online only Revised for Version 2.0 (Release 2018b)
March 2019 Online only Revised for Version 2.1 (Release 2019a)
September 2019 Online only Revised for Version 2.2 (Release 2019b)
March 2020 Online only Revised for Version 3.0 (Release 2020a)
September 2020 Online only Revised for Version 3.1 (Release 2020b)
March 2021 Online only Revised for Version 3.2 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

PHY Modeling
1

802.11az Waveform Generation . 1-2

Build VHT PPDU . 1-7

Generate VHT Multi-User Waveform . 1-9

Build S1G PPDU . 1-13

Build DMG PPDU . 1-14

Build HT PPDU . 1-16

Build Non-HT PPDU . 1-18

Basic VHT Data Recovery . 1-20

802.11ax Parameterization for Waveform Generation and Simulation . . 1-24

Basic WLAN Link Modeling . 1-46

802.11ac Multi-User MIMO Precoding . 1-53

MAC Modeling
2

802.11 MAC Frame Generation . 2-2

802.11 MAC Frame Decoding . 2-12

802.11ac Waveform Generation with MAC Frames 2-18

802.11 OFDM Beacon Frame Generation . 2-24

Signal Transmission
3

802.11be 4096-QAM 320 MHz Waveform Generation and Analysis 3-2

iii

Contents

802.11ad Waveform Generation with Beamforming 3-16

802.11ac Transmit Beamforming . 3-21

802.11ah Waveform Generation . 3-31

802.11n Link in Simulink . 3-40

Signal Reception
4

Recover and Analyze Packets in 802.11 Waveform 4-2

Recovery Procedure for an 802.11ax Packet . 4-12

Recovery Procedure for an 802.11ac Packet . 4-30

802.11 OFDM Beacon Receiver with Captured Data 4-41

Joint Sampling Rate and Carrier Frequency Offset Tracking 4-44

Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel
. 4-52

End-to-End VHT Simulation with Frequency Correction 4-55

Propagation Channel Models
5

802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay
Channel . 5-2

802.11ac Packet Error Rate Simulation for 8x8 TGac Channel 5-11

802.11n Packet Error Rate Simulation for 2x2 TGn Channel 5-17

802.11ah Packet Error Rate Simulation for 2x2 TGah Channel 5-23

Delay Profile and Fluorescent Lighting Effects . 5-29

End-to-End Simulation
6

802.11ax Packet Error Rate Simulation for Single-User Format 6-2

iv Contents

802.11ax Downlink OFDMA and Multi-User MIMO Throughput
Simulation . 6-9

802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format
. 6-20

802.11ax Compressed Beamforming Packet Error Rate Simulation 6-29

802.11ax Feedback Status Misdetection Simulation for Uplink Trigger-
Based Feedback NDP . 6-39

Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and
Deep Learning . 6-46

802.11az Positioning Using Super-Resolution Time of Arrival Estimation
. 6-63

802.11ad Packet Error Rate Simulation for Control PHY 6-77

802.11ad Packet Error Rate Simulation for OFDM PHY 6-84

802.11ad Single Carrier Link with RF Beamforming in Simulink 6-90

802.11p Packet Error Rate Simulation for a Vehicular Channel 6-100

802.11 Dynamic Rate Control Simulation . 6-106

System-Level Simulation
7

802.11ax Multinode System-Level Simulation of Residential Scenario
Using MATLAB . 7-2

Spatial Reuse with BSS Coloring in 802.11ax Residential Scenario 7-12

802.11 MAC and Application Throughput Measurement 7-27

802.11 MAC QoS Traffic Scheduling . 7-43

802.11ax System-Level Simulation with Physical Layer Abstraction . . . 7-52

Multi-Node 802.11a Network Modeling with PHY and MAC 7-63

802.11ax PHY-Focused System-Level Simulation 7-72

Physical Layer Abstraction for System-Level Simulation 7-85

802.11ax Downlink Throughput Comparison of OFDM and OFDMA
Through System-level Simulation . 7-100

Generate and Visualize FTP Application Traffic Pattern 7-111

v

Test and Measurement
8

Modeling and Testing an 802.11ax RF Receiver with 5G Interference . . . 8-2

Modeling and Testing an 802.11ax RF Transmitter 8-21

802.11ac Receiver Minimum Input Sensitivity Test 8-37

802.11ac Transmitter Measurements . 8-45

802.11ad Transmitter Spectral Emission Mask Testing 8-59

802.11p Spectral Emission Mask Testing . 8-65

Code Generation and Deployment
9

What is C Code Generation from MATLAB? . 9-2
Using MATLAB Coder . 9-2
C/C++ Compiler Setup . 9-2
Functions and System Objects That Support Code Generation 9-3

Code Generation of WLAN Toolbox™ Features . 9-4

Software-Defined Radio
10

802.11a Transmission and Reception Using Analog Devices AD9361/
AD9364 . 10-2

802.11 OFDM Beacon Receiver with USRP® Hardware 10-3

Transmission and Reception of an Image Using WLAN Toolbox and a
Single USRP® E310 . 10-4

Image Transmission and Reception Using WLAN Toolbox and One
PlutoSDR . 10-5

vi Contents

PHY Modeling

1

802.11az Waveform Generation
This example shows how to parameterize and generate IEEE® 802.11az™ high-efficiency (HE)
ranging null data packet (NDP) waveforms and highlights some of the key features of the standard.

Introduction

The 802.11az standard [1 on page 1-0], commonly referred to as next-generation positioning
(NGP), enables a station to identify its position relative to other stations. This standard supports two
HE ranging physical layer (PHY) protocol data unit (PPDU) formats:

• HE ranging NDP
• HE trigger-based (TB) ranging NDP

The HE ranging NDP and HE TB ranging NDP are the respective analogues of the HE sounding NDP
and HE TB NDP feedback PPDU formats, as defined in the 802.11ax™ standard. For more
information on these HE PPDU formats, see [2 on page 1-0].

The HE ranging NDP supports the positioning of one or more users with an optional secure HE long
training field (HE-LTF) sequence. The single-user HE ranging waveform contains HE-LTF symbols for
a single user, which also support an optional secure HE-LTF sequence. The multi-user HE ranging
waveform permits only secure HE-LTF symbols for multiple users. Single-user and multi-user
waveforms can contain multiple repetitions of the HE-LTF symbols. This feature can help improve
distance estimation accuracy.

Because the 802.11az standard uses the same underlying PHY technologies as the 802.11ax
standard, the processing chains are very similar. This example shows how to generate 802.11az HE
ranging NDP waveforms with secure and nonsecure HE-LTF sequences.

HE Ranging NDP Without Secure HE-LTF

The HE Ranging NDP contains HE-LTF symbols for a single user and uses the regular HE-LTF
sequence defined in [2 on page 1-0]. The number of HE-LTF symbols is the product of the number
of HE-LTF repetitions and the number of HE-LTF symbols per repetition. The number of HE-LTF
symbols depends on the number of space-time streams as specified in Table 21-13 of [3 on page 1-
0]. The construction of HE-LTF symbols in an HE Ranging NDP follows the steps defined in section
27.3.10.10 of [2 on page 1-0] for all repeated HE-LTF symbols in an HE-LTF.

Single-User HE Ranging NDP Generation

Configure a transmission with two antennas, two space-time streams, and two HE-LTF repetitions.

cfg = heRangingConfig('NumTransmitAntennas',2);
cfg.User{1}.NumSpaceTimeStreams = 2;
cfg.User{1}.NumHELTFRepetition = 2;

Generate the HE ranging NDP waveform for the specified configuration.

tx = heRangingWaveformGenerator(cfg);

Plot the transmission power on the first antenna.

heRangingWavGenPlot(tx,cfg);

1 PHY Modeling

1-2

HE Ranging NDP With Secure HE-LTF

To generate an HE ranging NDP with secure HE-LTF symbols, as defined in [2 on page 1-0], specify
either of these transmission parameter combinations.

• A single-user heRangingConfig object with its SecureHELTF property set to 1 (true)
• A multi-user heRangingConfig object

The secure HE-LTF comprises a randomized LTF sequence as defined in Section 27.3.17c of [1 on
page 1-0]. To specify this sequence for a chosen user, set the SecureHELTFSequence property of
the corresponding User property of the heRangingConfig object. If the number of bits in the
SecureHELTFSequence property is less than the required number of bits for the given user
configuration, the object cyclically extends the secure sequence. If the number of bits in
SecureHELTFSequence is more than the required number of bits for the given user configuration,
the object uses only the required number of bits. The object extracts the required bits from the
specified hexadecimal sequence. When the transmission contains a secure HE-LTF sequence, the
sequence must use a zero-power guard interval for the HE-LTF symbols. The packet extension (PE)
starts with a zero-power guard interval.

Single-User HE Ranging NDP with Secure HE-LTF Generation

Configure a transmission with two antennas, two space-time streams, three HE-LTF repetitions, and
secure HE-LTF symbols.

cfg = heRangingConfig('NumTransmitAntennas',2,'SecureHELTF',true);
cfg.User{1}.NumSpaceTimeStreams = 2;

 802.11az Waveform Generation

1-3

cfg.User{1}.NumHELTFRepetition = 3;
cfg.User{1}.SecureHELTFSequence = '12345678ABCDEF1234';

Generate the HE ranging NDP waveform for the specified configuration.

tx = heRangingWaveformGenerator(cfg);

Plot the transmission power on the first antenna.

heRangingWavGenPlot(tx,cfg);

Multi-User HE Ranging NDP Generation

A multi-user HE ranging NDP waveform contains secure HE-LTF symbols for multiple users. The
transmission concatenates HE-LTF symbols for each user up to a maximum of 64 consecutive
symbols. This example demonstrates waveform generation with a secure HE-LTF sequence shown for
two users. Configure transmission parameters, specifying two users and the number of space-time
streams and HE-LTF repetitions for each user.

cfg = heRangingConfig(2);
cfg.User{1}.NumSpaceTimeStreams = 1;
cfg.User{1}.NumHELTFRepetition = 2;
cfg.User{2}.NumSpaceTimeStreams = 1;
cfg.User{2}.NumHELTFRepetition = 3;

Determine the number of secure HE-LTF bits required to generate the secure HE-LTF symbols for
each user by using the numSecureHELTFBits object function.

1 PHY Modeling

1-4

numNibbles = numSecureHELTFBits(cfg)/4; % 4 bits per nibble

Set the secure HE-LTF sequences for each user.

secureSeqUser1 = 'a12c67f8b90dc56e78a2b3f1';
cfg.User{1}.SecureHELTFSequence = secureSeqUser1(1:numNibbles(1));
secureSeqUser2 = 'b3a49c5e6c1a2d35ed47c2d915f';
cfg.User{2}.SecureHELTFSequence = secureSeqUser2(1:numNibbles(2));

Generate the HE ranging NDP waveform for the specified configuration.

tx = heRangingWaveformGenerator(cfg);

Plot the transmission power on the first antenna.

heRangingWavGenPlot(tx,cfg);

References

1 IEEE P802.11az™/D2.0 Draft Standard for Information technology — Telecommunications and
information exchange between systems Local and metropolitan area networks — Specific
requirements - Amendment 3: Enhancements for positioning.

2 IEEE P802.11ax™/D4.1 Draft Standard for Information technology — Telecommunications and
information exchange between systems — Local and metropolitan area networks — Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications — Amendment 6: Enhancements for High Efficiency WLAN.

 802.11az Waveform Generation

1-5

3 IEEE Std 802.11™-2016 IEEE Standard for Information technology — Telecommunications and
information exchange between systems — Local and metropolitan area networks — Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

1 PHY Modeling

1-6

Build VHT PPDU
Build VHT PPDUs by using the waveform generator function or by building each field individually.

Waveform Generator

Create a VHT configuration object.

vht = wlanVHTConfig;

Generate the VHT PPDU. The length of the input data sequence in bits must be 8 times the length of
the PSDU, which is expressed in bytes. Turn off windowing.

x = randi([0 1],vht.PSDULength*8,1);
y = wlanWaveformGenerator(x,vht,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/80e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

Individual PPDU Fields

Create L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, and VHT-SIG-B preamble fields.

 Build VHT PPDU

1-7

lstf = wlanLSTF(vht);
lltf = wlanLLTF(vht);
lsig = wlanLSIG(vht);
vhtSigA = wlanVHTSIGA(vht);
vhtstf = wlanVHTSTF(vht);
vhtltf = wlanVHTLTF(vht);
vhtSigB = wlanVHTSIGB(vht);

Generate the VHT-Data field using input data field x, which was used as an input to the waveform
generator.

vhtData = wlanVHTData(x,vht);

Concatenate the individual fields to create a single PPDU.

z = [lstf; lltf; lsig; vhtSigA; vhtstf; vhtltf; vhtSigB; vhtData];

Verify that the PPDUs created by the two methods are identical.

isequal(y,z)

ans = logical
 1

See Also
“Build S1G PPDU” on page 1-13 | “Build DMG PPDU” on page 1-14 | “Build HT PPDU” on page 1-
16 | “Build Non-HT PPDU” on page 1-18

1 PHY Modeling

1-8

Generate VHT Multi-User Waveform
This example shows how to generate a VHT multi-user waveform from individual components. It also
shows how to generate the same waveform by using the wlanWaveformGenerator function.

Create a VHT configuration object, specifying three users and three transmit antennas.

vht = wlanVHTConfig('NumUsers',3,'NumTransmitAntennas',3);

Set the number of space-time streams to the vector [1 1 1], which indicates that each user is
assigned one space-time stream. Set the user positions to [0 1 2]. Set the group ID to 5. Group ID
values from 1 to 62 apply for multiuser operation.

vht.NumSpaceTimeStreams = [1 1 1];
vht.UserPositions = [0 1 2];
vht.GroupID = 5;

Set a different MCS value for each user.

vht.MCS = [0 2 4];

Set the APEP length to 2000, 1400, and 1800 bytes. Each element corresponds to the number of
bytes assigned to each user.

vht.APEPLength = [2000 1400 1800]

vht =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'
 NumUsers: 3
 UserPositions: [0 1 2]
 NumTransmitAntennas: 3
 NumSpaceTimeStreams: [1 1 1]
 SpatialMapping: 'Direct'
 MCS: [0 2 4]
 ChannelCoding: 'BCC'
 APEPLength: [2000 1400 1800]
 GuardInterval: 'Long'
 GroupID: 5

 Read-only properties:
 PSDULength: [2000 6008 12019]

Display the PSDU lengths for the three users. The PSDU length is a function of both the APEP length
and the MCS value.

vht.PSDULength

ans = 1×3

 2000 6008 12019

Display the field indices for the VHT waveform.

ind = wlanFieldIndices(vht)

 Generate VHT Multi-User Waveform

1-9

ind = struct with fields:
 LSTF: [1 640]
 LLTF: [641 1280]
 LSIG: [1281 1600]
 VHTSIGA: [1601 2240]
 VHTSTF: [2241 2560]
 VHTLTF: [2561 3840]
 VHTSIGB: [3841 4160]
 VHTData: [4161 48000]

Create the individual fields that comprise the VHT waveform.

lstf = wlanLSTF(vht);
lltf = wlanLLTF(vht);
lsig = wlanLSIG(vht);
[vhtsigA,sigAbits] = wlanVHTSIGA(vht);
vhtstf = wlanVHTSTF(vht);
vhtltf = wlanVHTLTF(vht);
[vhtsigB,sigBbits] = wlanVHTSIGB(vht);

Extract the first two VHT-SIG-A information bits and convert them to their decimal equivalent.

bw = bi2de(double(sigAbits(1:2)'))

bw = 2

The value, 2, corresponds to an 80 MHz bandwidth (see wlanVHTSIGA).

Extract VHT-SIG-A information bits 5 through 10, and convert them to their decimal equivalent.

groupid = bi2de(double(sigAbits(5:10)'))

groupid = 5

The extracted group ID, 5, matches the corresponding property in the VHT configuration object.

Extract the packet length from the VHT-SIG-B information bits. For multiuser operation with an 80
MHz bandwidth, the first 19 bits contain the APEP length information. Convert the field lengths to
their decimal equivalents. Multiply them by 4 because the length of the VHT-SIG-B field is expressed
in units of 4 bytes.

pktLen = bi2de(double(sigBbits(1:19,:)'))*4

pktLen = 3×1

 2000
 1400
 1800

Confirm that the extracted APEP length matches the value set in the configuration object.

isequal(pktLen',vht.APEPLength)

ans = logical
 1

1 PHY Modeling

1-10

Extract the MCS values from the VHT-SIG-B information bits. The MCS component is specified by bits
20 to 23.

mcs = bi2de(double(sigBbits(20:23,:)'))

mcs = 3×1

 0
 2
 4

The values correspond to those set in the VHT configuration object.

Create three data sequences, one for each user.

d1 = randi([0 1],vht.PSDULength(1)*8,1);
d2 = randi([0 1],vht.PSDULength(2)*8,1);
d3 = randi([0 1],vht.PSDULength(3)*8,1);

Generate a VHT data field using these data sequences.

vhtdata = wlanVHTData({d1 d2 d3},vht);

Generate a multiuser VHT waveform with windowing is disabled. Extract the data field from the
waveform.

wv = wlanWaveformGenerator({d1 d2 d3},vht,'WindowTransitionTime',0);
wvdata = wv(ind.VHTData(1):ind.VHTData(2),:);

Confirm that the two generation approaches produce identical results.

isequal(vhtdata,wvdata)

ans = logical
 1

Visualize the waveform by plotting its magnitude.

t = ((1:length(wv))'-1)/80e6;
plot(t,abs(wv))
xlabel('Time (s)')
ylabel('Magnitude')

 Generate VHT Multi-User Waveform

1-11

1 PHY Modeling

1-12

Build S1G PPDU
Build S1G PPDUs by using the waveform generator function.

Waveform Generator

Create an S1G configuration object.

s1g = wlanS1GConfig;

Generate the S1G PPDU. The length of the input data sequence in bits must be 8 times the length of
the PSDU, which is expressed in bytes. Turn off windowing.

x = randi([0 1],s1g.PSDULength*8,1);
y = wlanWaveformGenerator(x,s1g,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/80e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

See Also
“Build VHT PPDU” on page 1-7 | “Build DMG PPDU” on page 1-14 | “Build HT PPDU” on page 1-16
| “Build Non-HT PPDU” on page 1-18

 Build S1G PPDU

1-13

Build DMG PPDU
Build DMG PPDUs by using the waveform generator function.

Waveform Generator

Create an DMG configuration object.

dmg = wlanDMGConfig

dmg =
 wlanDMGConfig with properties:

 MCS: '0'
 TrainingLength: 0
 PSDULength: 1000
 ScramblerInitialization: 2
 Turnaround: 0

Generate the DMG PPDU. The length of the input data sequence in bits must be 8 times the length of
the PSDU, which is expressed in bytes. Turn off windowing.

psdu = randi([0 1],dmg.PSDULength*8,1);
tx = wlanWaveformGenerator(psdu,dmg,'WindowTransitionTime',0);

The waveform has MCS=0, which is single carrier and DBPSK modulated. Plot the constellation of
the waveform.

scatterplot(tx)

1 PHY Modeling

1-14

See Also
“Build VHT PPDU” on page 1-7 | “Build S1G PPDU” on page 1-13 | “Build HT PPDU” on page 1-16 |
“Build Non-HT PPDU” on page 1-18

 Build DMG PPDU

1-15

Build HT PPDU
Build HT PPDUs by using the waveform generator function or by building each field individually.

Waveform Generator

Create an HT configuration object.

ht = wlanHTConfig;

Generate the HT PPDU. The length of the input data sequence in bits must be 8 times the length of
the PSDU, which is expressed in bytes. Turn windowing off.

x = randi([0 1],ht.PSDULength*8,1);
y = wlanWaveformGenerator(x,ht,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/20e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

Individual PPDU Fields

Create L-STF, L-LTF, L-SIG, HT-SIG, HT-STF, and HT-LTF preamble fields.

1 PHY Modeling

1-16

lstf = wlanLSTF(ht);
lltf = wlanLLTF(ht);
lsig = wlanLSIG(ht);
htsig = wlanHTSIG(ht);
htstf = wlanHTSTF(ht);
htltf = wlanHTLTF(ht);

Generate the HT-Data field using input data field x, which is the same input signal that was used with
the waveform generator.

htData = wlanHTData(x,ht);

Concatenate the individual fields to create a single PPDU.

z = [lstf; lltf; lsig; htsig; htstf; htltf; htData];

Verify that the PPDUs created by the two methods are identical.

isequal(y,z)

ans = logical
 1

See Also
“Build VHT PPDU” on page 1-7 | “Build S1G PPDU” on page 1-13 | “Build DMG PPDU” on page 1-14 |
“Build Non-HT PPDU” on page 1-18

 Build HT PPDU

1-17

Build Non-HT PPDU
Build non-HT PPDUs by using the waveform generator function or by building each field individually.

Waveform Generator

Create a non-HT configuration object.

nht = wlanNonHTConfig;

Generate the non-HT PPDU. The length of the input data sequence in bits must be 8 times the length
of the PSDU, which is expressed in bytes. Turn off windowing.

x = randi([0 1],nht.PSDULength*8,1);
y = wlanWaveformGenerator(x,nht,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/20e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

Individual PPDU Fields

Create L-STF, L-LTF, and L-SIG preamble fields.

1 PHY Modeling

1-18

lstf = wlanLSTF(nht);
lltf = wlanLLTF(nht);
lsig = wlanLSIG(nht);

Generate the Non-HT-data field using input data field x, which was used as the input to the waveform
generator.

nhtData = wlanNonHTData(x,nht);

Concatenate the individual fields to create a single PPDU.

z = [lstf; lltf; lsig; nhtData];

Verify that the PPDUs created by the two methods are identical.

isequal(y,z)

ans = logical
 1

See Also
“Build VHT PPDU” on page 1-7 | “Build S1G PPDU” on page 1-13 | “Build DMG PPDU” on page 1-14 |
“Build HT PPDU” on page 1-16

 Build Non-HT PPDU

1-19

Basic VHT Data Recovery
This example shows how to perform basic VHT data recovery. It also shows how to recover VHT data
when the received signal has a carrier frequency offset. Similar procedures can be used to recover
data with the HT and non-HT formats.

Basic Data Recovery

WLAN Toolbox™ provides functions to generate and recover IEEE® 802.11ac™ standards-compliant
waveforms. The data recovery process comprises these steps.

1 Generate a VHT waveform
2 Pass the waveform through a channel
3 Extract the VHT-LTF and demodulate
4 Estimate the channel by using the demodulated VHT-LTF
5 Extract the data field
6 Recover the data by using the channel and noise variance estimates

The block diagram shows these steps, along with their corresponding commands.

Create VHT configuration object.

cfg = wlanVHTConfig;

Create a VHT transmit waveform by using the VHT configuration object. Set the data sequence to
[1;0;1;1]. The waveform generator function repeats the data sequence to generate the specified
number of packets.

txSig = wlanWaveformGenerator([1;0;1;1],cfg);

1 PHY Modeling

1-20

Pass the received signal through an AWGN channel.

rxSig = awgn(txSig,10);

Determine the field indices of the waveform.

ind = wlanFieldIndices(cfg);

Extract the VHT-LTF from the received signal.

rxVHTLTF = rxSig(ind.VHTLTF(1):ind.VHTLTF(2),:);

Demodulate the VHT-LTF. Estimate the channel response by using the demodulated signal.

demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,cfg);
chEst = wlanVHTLTFChannelEstimate(demodVHTLTF,cfg);

Extract the VHT data field.

rxData = rxSig(ind.VHTData(1):ind.VHTData(2),:);

Recover the information bits by using the channel and noise variance estimates. Confirm that the first
8 bits match two repetitions of the input data sequence of [1;0;1;1].

rxBits = wlanVHTDataRecover(rxData,chEst,0.1,cfg);

rxBits(1:8)

ans = 8x1 int8 column vector

 1
 0
 1
 1
 1
 0
 1
 1

Data Recovery with Frequency Correction

Data recovery when a carrier frequency offset is present is accomplished by these steps.

1 Generate a VHT waveform
2 Pass the waveform through a channel
3 Extract the L-STF and perform a coarse frequency offset estimate
4 Correct for the offset by using the coarse estimate
5 Extract the L-LTF and perform a fine frequency offset estimate
6 Correct for the offset by using the fine estimate
7 Extract the VHT-LTF and demodulate
8 Estimate the channel by using the demodulated VHT-LTF
9 Extract the data field
10 Recover the data by using the channel and noise variance estimates

 Basic VHT Data Recovery

1-21

The block diagram shows these steps, along with their corresponding commands.

Set the channel bandwidth and sample rate.

cbw = 'CBW160';
fs = 160e6;

Create a VHT configuration object that supports a 2x2 MIMO transmission.

cfg = wlanVHTConfig('ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

Generate a VHT waveform containing a random PSDU.

txPSDU = randi([0 1],cfg.PSDULength*8,1);
txSig = wlanWaveformGenerator(txPSDU,cfg);

Create a 2x2 TGac channel.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',2,'NumReceiveAntennas',2);

Create a phase and frequency offset object.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');

Pass the transmitted waveform through the noisy TGac channel.

rxSigNoNoise = tgacChan(txSig);
rxSig = awgn(rxSigNoNoise,15);

Introduce a frequency offset of 500 Hz to the received signal.

rxSigFreqOffset = pfOffset(rxSig,500);

Find the start and stop indices for all component fields of the PPDU.

1 PHY Modeling

1-22

ind = wlanFieldIndices(cfg);

Extract the L-STF. Estimate and correct for the carrier frequency offset.

rxLSTF = rxSigFreqOffset(ind.LSTF(1):ind.LSTF(2),:);

foffset1 = wlanCoarseCFOEstimate(rxLSTF,cbw);
rxSig1 = pfOffset(rxSigFreqOffset,-foffset1);

Extract the L-LTF from the corrected signal. Estimate and correct for the residual frequency offset.

rxLLTF = rxSig1(ind.LLTF(1):ind.LLTF(2),:);

foffset2 = wlanFineCFOEstimate(rxLLTF,cbw);
rxSig2 = pfOffset(rxSig1,-foffset2);

Extract and demodulate the VHT-LTF. Estimate the channel coefficients.

rxVHTLTF = rxSig2(ind.VHTLTF(1):ind.VHTLTF(2),:);
demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,cfg);
chEst = wlanVHTLTFChannelEstimate(demodVHTLTF,cfg);

Extract the VHT data field from the received and frequency-corrected PPDU. Recover the data field.

rxData = rxSig2(ind.VHTData(1):ind.VHTData(2),:);
rxPSDU = wlanVHTDataRecover(rxData,chEst,0.03,cfg);

Calculate the number of bit errors in the received packet.

numErr = biterr(txPSDU,rxPSDU)

numErr = 2

 Basic VHT Data Recovery

1-23

802.11ax Parameterization for Waveform Generation and
Simulation

This example shows how to parameterize and generate different IEEE® 802.11ax™ high efficiency
(HE) format packets.

Introduction

IEEE P802.11ax/D4.1 [1] specifies four high efficiency (HE) packet formats:

1 Single-user
2 Extended-range single-user
3 Multi-user
4 Trigger-based

This example shows how packets can be generated for these different formats, and demonstrates
some of the key features of the draft standard [1].

HE Single-User Format

An HE single-user (SU) packet is a full-band transmission to a single user. The transmit parameters
for the HE SU format are configured using a wlanHESUConfig object. The wlanHESUConfig object
can be configured to operate in extended-range mode. To enable or disable this mode, set the
ExtendedRange property to true or false. In this example we create a configuration for an HE SU
transmission and configure transmission properties.

cfgSU = wlanHESUConfig;
cfgSU.ExtendedRange = false; % Do not use extended-range format
cfgSU.ChannelBandwidth = 'CBW20'; % Channel bandwidth
cfgSU.APEPLength = 1000; % Payload length in bytes
cfgSU.MCS = 0; % Modulation and coding scheme
cfgSU.ChannelCoding = 'LDPC'; % Channel coding
cfgSU.NumSpaceTimeStreams = 1; % Number of space-time streams
cfgSU.NumTransmitAntennas = 1; % Number of transmit antennas

A single-user packet can be generated with the waveform generator, wlanWaveformGenerator. The
getPSDULength() method returns the required PSDU length given the transmission configuration.
This length is used to create a random PSDU for transmission.

psdu = randi([0 1],getPSDULength(cfgSU)*8,1,'int8'); % Random PSDU
txSUWaveform = wlanWaveformGenerator(psdu,cfgSU); % Create packet

HE Extended-Range Single-User Format

An extended-range single-user packet has the same fields as the standard single-user format, but the
powers of some fields are boosted, and some fields are repeated to improve performance at low
SNRs. An extended-range packet can be configured using a wlanHESUConfig object with
ChannelBandwidth set to 'CBW20' and ExtendedRange set to true. An extended-range packet
has an option to only transmit in the upper 106-tone resource unit (RU) within the 20 MHz channel,
or over the entire bandwidth. This can be configured with the Upper106ToneRU property:

cfgExtSU = cfgSU;
cfgExtSU.ExtendedRange = true; % Enable extended-range format
cfgExtSU.Upper106ToneRU = true; % Use only upper 106-tone RU

1 PHY Modeling

1-24

% Generate a packet
psdu = randi([0 1],getPSDULength(cfgExtSU)*8,1,'int8'); % Random PSDU
txExtSUWaveform = wlanWaveformGenerator(psdu,cfgExtSU); % Create packet

Look at the spectrum and spectrogram of the generated signal. In the spectrogram you can see that
the packet headers use the available bandwidth, however, the data portion only occupies the upper
half of the channel.

fs = wlanSampleRate(cfgExtSU); % Get baseband sample rate
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgExtSU);
fftsize = ofdmInfo.FFTLength; % Use the data field fft size
rbw = fs/fftsize; % Resoluton bandwidth
spectrumAnalyzer = dsp.SpectrumAnalyzer('SampleRate',fs,...
 'Method','Filter bank','RBWSource','Property','RBW',rbw,...
 'AveragingMethod','Exponential','ForgettingFactor',0.25,...
 'ReducePlotRate',false,'YLimits',[-50,20],...
 'Title','HE Extended-Range SU with Active Upper 106-Tone RU');
spectrumAnalyzer.ViewType = 'Spectrum and Spectrogram';
spectrumAnalyzer.TimeSpanSource = 'Property';
spectrumAnalyzer.TimeSpan = length(txExtSUWaveform)/fs;
spectrumAnalyzer(txExtSUWaveform)

If you compare the power of the L-STF and L-LTF fields you can see that the extended-range
transmission is boosted by 3 dB.

 802.11ax Parameterization for Waveform Generation and Simulation

1-25

figure;
ind = wlanFieldIndices(cfgExtSU);
t = (0:(ind.LLTF(2)-1))/fs*1e6;
plot(t,20*log10(movmean(abs(txSUWaveform(1:ind.LLTF(2))),20)),'-b')
hold on;
plot(t,20*log10(movmean(abs(txExtSUWaveform(1:ind.LLTF(2))),20)),'-r')
grid on;
title('Power of L-STF and L-LTF (1 us Moving Average)');
xlabel('Time (us)');
ylabel('Power (dBW)');
legend('HE SU','HE Extended-Range SU','Location','SouthWest');

HE Multi-User Format - OFDMA

The HE multi-user (HE MU) format can be configured for an OFDMA transmission, a MU-MIMO
transmission, or a combination of the two. This flexibility allows an HE MU packet to transmit to a
single user over the whole band, multiple users over different parts of the band (OFDMA), or multiple
users over the same part of the band (MU-MIMO).

For an OFDMA transmission, the channel bandwidth is divided into resource units (RUs). An RU is a
group of subcarriers assigned to one or more users. An RU is defined by a size (the number of
subcarriers) and an index. The RU index specifies the location of the RU within the channel. For
example, in an 80 MHz transmission there are four possible 242-tone RUs, one in each 20 MHz
subchannel. RU# 242-1 (size 242, index 1) is the RU occupying the lowest absolute frequency within
the 80 MHz, and RU# 242-4 (size 242, index 4) is the RU occupying the highest absolute frequency.
The draft standard defines possible sizes and locations of RUs in Section 27.3.2.2 of [1].

1 PHY Modeling

1-26

The assignment of RUs in a transmission is defined by the allocation index. The allocation index is
defined in Table 28-24 of [1]. For each 20 MHz subchannel, an 8-bit index describes the number and
size of RUs, and the number of users transmitted on each RU. The allocation index also determines
which content channel is used to signal a user in HE-SIG-B. The allocation indices within Table 28-24,
and the corresponding RU assignments, are provided in the table returned by the function
heRUAllocationTable. The first 10 allocations within the table are shown below. For each
allocation index, the 8-bit allocation index, the number of users, number of RUs, RU indices, RU sizes,
and number of users per RU are displayed. A note is also provided about allocations which are
reserved, or serve a special purpose. The allocation table can also be viewed in the Appendix.

allocationTable = heRUAllocationTable;
disp('First 10 entries in the allocation table: ')
disp(allocationTable(1:10,:));

First 10 entries in the allocation table:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _____________________ ______________________________ _____________________ ____

 0 "00000000" 9 9 {[1 2 3 4 5 6 7 8 9]} {[26 26 26 26 26 26 26 26 26]} {[1 1 1 1 1 1 1 1 1]} ""
 1 "00000001" 8 8 {[1 2 3 4 5 6 7 4]} {[26 26 26 26 26 26 26 52]} {[1 1 1 1 1 1 1 1]} ""
 2 "00000010" 8 8 {[1 2 3 4 5 3 8 9]} {[26 26 26 26 26 52 26 26]} {[1 1 1 1 1 1 1 1]} ""
 3 "00000011" 7 7 {[1 2 3 4 5 3 4]} {[26 26 26 26 26 52 52]} {[1 1 1 1 1 1 1]} ""
 4 "00000100" 8 8 {[1 2 2 5 6 7 8 9]} {[26 26 52 26 26 26 26 26]} {[1 1 1 1 1 1 1 1]} ""
 5 "00000101" 7 7 {[1 2 2 5 6 7 4]} {[26 26 52 26 26 26 52]} {[1 1 1 1 1 1 1]} ""
 6 "00000110" 7 7 {[1 2 2 5 3 8 9]} {[26 26 52 26 52 26 26]} {[1 1 1 1 1 1 1]} ""
 7 "00000111" 6 6 {[1 2 2 5 3 4]} {[26 26 52 26 52 52]} {[1 1 1 1 1 1]} ""
 8 "00001000" 8 8 {[1 3 4 5 6 7 8 9]} {[52 26 26 26 26 26 26 26]} {[1 1 1 1 1 1 1 1]} ""
 9 "00001001" 7 7 {[1 3 4 5 6 7 4]} {[52 26 26 26 26 26 52]} {[1 1 1 1 1 1 1]} ""

A wlanHEMUConfig object is used to configure the transmission of an HE MU packet. The allocation
index for each 20 MHz subchannel must be provided when creating an HE MU configuration object,
wlanHEMUConfig. An integer between 0 and 223, corresponding to the 8-bit number in Table 28-24
of [1], must be provided for each 20 MHz subchannel.

The allocation index can be provided as a decimal or 8-bit binary sequence. In this example, a 20
MHz HE MU configuration is created with 8-bit allocation index "10000000". This is equivalent to the
decimal allocation index 128. This configuration specifies 3 RUs, each with one user.

allocationIndex = "10000000"; % 3 RUs, 1 user per RU
cfgMU = wlanHEMUConfig(allocationIndex);

The showAllocation method visualizes the occupied RUs and subcarriers for the specified
configuration. The colored blocks illustrate the occupied subcarriers in the pre-HE and HE portions of
the packet. White indicates subcarriers are unoccupied. The pre-HE portion illustrates the occupied
subcarriers in the fields preceding HE-STF. The HE portion illustrates the occupied subcarriers in the
HE-STF, HE-LTF and HE-Data field and therefore shows the RU allocation. Clicking on an RU will
display information about the RU. The RU number corresponds to the i-th RU element of the
cfgMU.RU property. The size and index are the details of the RU. The RU index is the i-th possible RU
of the corresponding RU size within the channel bandwidth, for example Index 2 is the 2nd possible
106-tone RU within the 20 MHz channel bandwidth. The user number corresponds to the i-th User
element of the cfgMU.User property, and the user field in HE-SIG-B. Note the middle RU (RU #2) is
split across the DC subcarriers.

showAllocation(cfgMU);
axAlloc = gca; % Get axis handle for subsequent plotting

 802.11ax Parameterization for Waveform Generation and Simulation

1-27

The ruInfo method provides details of the RUs in the configuration. In this case we can see three
users and three RUs.

allocInfo = ruInfo(cfgMU);
disp('Allocation info:')
disp(allocInfo)

Allocation info:
 NumUsers: 3
 NumRUs: 3
 RUIndices: [1 5 2]
 RUSizes: [106 26 106]
 NumUsersPerRU: [1 1 1]
 NumSpaceTimeStreamsPerRU: [1 1 1]
 PowerBoostFactorPerRU: [1 1 1]
 RUNumbers: [1 2 3]

The properties of cfgMU describe the transmission configuration. The cfgMU.RU and cfgMU.User
properties of cfgMU are cell arrays. Each element of the cell arrays contains an object which
configures an RU or a User. When the cfgMU object is created, the elements of cfgMU.RU and
cfgMU.User are configured to create the desired number of RUs and users. Each element of
cfgMU.RU is a wlanHEMURU object describing the configuration of an RU. Similarly, each element of
cfgMU.User is a wlanHEMUUser object describing the configuration of a User. This object hierarchy
is shown below:

1 PHY Modeling

1-28

In this example, three RUs are specified by the allocation index 128, therefore cfgMU.RU is a cell
array with three elements. The index and size of each RU are configured according to the allocation
index used to create cfgMU. After the object is created, each RU can be configured to create the
desired transmission configuration, by setting the properties of the appropriate RU object. For
example, the spatial mapping and power boost factor can be configured per RU. The Size and Index
properties of each RU are fixed once the object is created, and therefore are read-only properties.
Similarly, the UserNumbers property is read-only and indicates which user is transmitted on the RU.
For this configuration the first RU is size 106, index 1.

disp('First RU configuration:')
disp(cfgMU.RU{1})

First RU configuration:
 wlanHEMURU with properties:

 PowerBoostFactor: 1
 SpatialMapping: 'Direct'

 Read-only properties:
 Size: 106
 Index: 1
 UserNumbers: 1

In this example, the allocation index specifies three users in the transmission, therefore, cfgMU.User
contains three elements. The transmission properties of users can be configured by modifying
individual user objects, for example the MCS, APEP length and channel coding scheme. The read-only
RUNumber property indicates which RU is used to transmit this user.

 802.11ax Parameterization for Waveform Generation and Simulation

1-29

disp('First user configuration:')
disp(cfgMU.User{1})

First user configuration:
 wlanHEMUUser with properties:

 APEPLength: 100
 MCS: 0
 NumSpaceTimeStreams: 1
 DCM: 0
 ChannelCoding: 'LDPC'
 STAID: 0
 NominalPacketPadding: 0
 PostFECPaddingSource: 'mt19937ar with seed'
 PostFECPaddingSeed: 1

 Read-only properties:
 RUNumber: 1

The number of users per RU, and mapping of users to RUs is determined by the allocation index. The
UserNumbers property of an RU object indicates which users (elements of the cfgMU.User cell
array) are transmitted on that RU. Similarly, the RUNumber property of each User object, indicates
which RU (element of the cfgMU.RU cell array) is used to transmit the user:

This allows the properties of an RU associated with a User to be accessed easily:

ruNum = cfgMU.User{2}.RUNumber; % Get the RU number associated with user 2
disp(cfgMU.RU{ruNum}.SpatialMapping); % Display the spatial mapping

Direct

When an RU serves multiple users, in a MU-MIMO configuration, the UserNumbers property can
index multiple users:

1 PHY Modeling

1-30

Once the cfgMU object is created, transmission parameters can be set as demonstrated below.

% Configure RU 1 and user 1
cfgMU.RU{1}.SpatialMapping = 'Direct';
cfgMU.User{1}.APEPLength = 1e3;
cfgMU.User{1}.MCS = 2;
cfgMU.User{1}.NumSpaceTimeStreams = 4;
cfgMU.User{1}.ChannelCoding = 'LDPC';

% Configure RU 2 and user 2
cfgMU.RU{2}.SpatialMapping = 'Fourier';
cfgMU.User{2}.APEPLength = 500;
cfgMU.User{2}.MCS = 3;
cfgMU.User{2}.NumSpaceTimeStreams = 2;
cfgMU.User{2}.ChannelCoding = 'LDPC';

% Configure RU 3 and user 3
cfgMU.RU{3}.SpatialMapping = 'Fourier';
cfgMU.User{3}.APEPLength = 100;
cfgMU.User{3}.MCS = 4;
cfgMU.User{3}.DCM = true;
cfgMU.User{3}.NumSpaceTimeStreams = 1;
cfgMU.User{3}.ChannelCoding = 'BCC';

Some transmission parameters are common for all users in the HE MU transmission.

% Configure common parameters for all users
cfgMU.NumTransmitAntennas = 4;
cfgMU.SIGBMCS = 2;

To generate the HE MU waveform, we first create a random PSDU for each user. A cell array is used
to store the PSDU for each user as the PSDU lengths differ. The getPSDULength() method returns a
vector with the required PSDU per user given the configuration. The waveform generator is then
used to create a packet.

 802.11ax Parameterization for Waveform Generation and Simulation

1-31

psduLength = getPSDULength(cfgMU);
psdu = cell(1,allocInfo.NumUsers);
for i = 1:allocInfo.NumUsers
 psdu{i} = randi([0 1],psduLength(i)*8,1,'int8'); % Generate random PSDU
end

% Create MU packet
txMUWaveform = wlanWaveformGenerator(psdu,cfgMU);

To configure an OFDMA transmission with a channel bandwidth greater than 20 MHz, an allocation
index must be provided for each 20 MHz subchannel. For example, to configure an 80 MHz OFDMA
transmission, four allocation indices are required. In this example four 242-tone RUs are configured.
The allocation index 192 specifies one 242-tone RU with a single user in a 20 MHz subchannel,
therefore the allocation indices [192 192 192 192] are used to create four of these RUs, over 80
MHz:

% Display 192 allocation index properties in the table (the 193rd row)
disp('Allocation #192 table entry:')
disp(allocationTable(193,:))

% Create 80 MHz MU configuration, with four 242-tone RUs
cfgMU80MHz = wlanHEMUConfig([192 192 192 192]);

Allocation #192 table entry:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _________ _______ _____________ ____

 192 "11000000" 1 1 {[1]} {[242]} {[1]} ""

When multiple 20 MHz subchannels are specified, the ChannelBandwidth property is set to the
appropriate value. For this configuration it is set to 'CBW80' as four 20 MHz subchannels are
specified. This is also visible in the allocation plot.

disp('Channel bandwidth for HE MU allocation:')
disp(cfgMU80MHz.ChannelBandwidth)
showAllocation(cfgMU80MHz,axAlloc)

Channel bandwidth for HE MU allocation:
CBW80

1 PHY Modeling

1-32

HE Multi-User Format - MU-MIMO

An HE MU packet can also transmit an RU to multiple users using MU-MIMO. For a full band MU-
MIMO allocation, the allocation indices between 192 and 199 configure a full-band 20 MHz allocation
(242-tone RU). The index within this range determines how many users are configured. The allocation
details can be viewed in the allocation table. Note the NumUsers column in the table grows with
index but the NumRUs is always 1. The allocation table can also be viewed in the Appendix.

disp('Allocation #192-199 table entries:')
disp(allocationTable(193:200,:)) % Indices 192-199 (rows 193 to 200)

Allocation #192-199 table entries:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _________ _______ _____________ ____

 192 "11000000" 1 1 {[1]} {[242]} {[1]} ""
 193 "11000001" 2 1 {[1]} {[242]} {[2]} ""
 194 "11000010" 3 1 {[1]} {[242]} {[3]} ""
 195 "11000011" 4 1 {[1]} {[242]} {[4]} ""
 196 "11000100" 5 1 {[1]} {[242]} {[5]} ""
 197 "11000101" 6 1 {[1]} {[242]} {[6]} ""
 198 "11000110" 7 1 {[1]} {[242]} {[7]} ""
 199 "11000111" 8 1 {[1]} {[242]} {[8]} ""

 802.11ax Parameterization for Waveform Generation and Simulation

1-33

The allocation index 193 transmits a 20 MHz 242-tone RU to two users. In this example, we will
create a transmission with a random spatial mapping matrix which maps a single space-time stream
for each user, onto two transmit antennas.

% Configure 2 users in a 20 MHz channel
cfgMUMIMO = wlanHEMUConfig(193);

% Set the transmission properties of each user
cfgMUMIMO.User{1}.APEPLength = 100; % Bytes
cfgMUMIMO.User{1}.MCS = 2;
cfgMUMIMO.User{1}.ChannelCoding = 'LDPC';
cfgMUMIMO.User{1}.NumSpaceTimeStreams = 1;

cfgMUMIMO.User{2}.APEPLength = 1000; % Bytes
cfgMUMIMO.User{2}.MCS = 6;
cfgMUMIMO.User{2}.ChannelCoding = 'LDPC';
cfgMUMIMO.User{2}.NumSpaceTimeStreams = 1;

% Get the number of occupied subcarriers in the RU
ruIndex = 1; % Get the info for the first (and only) RU
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgMUMIMO,ruIndex);
numST = ofdmInfo.NumTones; % Number of occupied subcarriers

% Set the number of transmit antennas and generate a random spatial mapping
% matrix
numTx = 2;
allocInfo = ruInfo(cfgMUMIMO);
numSTS = allocInfo.NumSpaceTimeStreamsPerRU(ruIndex);
cfgMUMIMO.NumTransmitAntennas = numTx;
cfgMUMIMO.RU{ruIndex}.SpatialMapping = 'Custom';
cfgMUMIMO.RU{ruIndex}.SpatialMappingMatrix = rand(numST,numSTS,numTx);

% Create packet with a repeated bit sequence as the PSDU
txMUMIMOWaveform = wlanWaveformGenerator([1 0 1 0],cfgMUMIMO);

A full band MU-MIMO transmission with a channel bandwidth greater than 20 MHz is created by
providing a single RU allocation index within the range 200-223 when creating the wlanHEMUConfig
object. For these allocations HE-SIG-B compression is used.

The allocation indices between 200 and 207 configure a full-band MU-MIMO 40 MHz allocation (484-
tone RU). The index within this range determines how many users are configured. The allocation
details can be viewed in the allocation table. Note the NumUsers column in the table grows with
index but the NumRUs is always 1.

disp('Allocation #200-207 table entries:')
disp(allocationTable(201:208,:)) % Indices 200-207 (rows 201 to 208)

Allocation #200-207 table entries:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _________ _______ _____________ ____

 200 "11001000" 1 1 {[1]} {[484]} {[1]} ""
 201 "11001001" 2 1 {[1]} {[484]} {[2]} ""
 202 "11001010" 3 1 {[1]} {[484]} {[3]} ""
 203 "11001011" 4 1 {[1]} {[484]} {[4]} ""
 204 "11001100" 5 1 {[1]} {[484]} {[5]} ""
 205 "11001101" 6 1 {[1]} {[484]} {[6]} ""
 206 "11001110" 7 1 {[1]} {[484]} {[7]} ""

1 PHY Modeling

1-34

 207 "11001111" 8 1 {[1]} {[484]} {[8]} ""

Similarly, the allocation indices between 208 and 215 configure a full-band MU-MIMO 80 MHz
allocation (996-tone RU), and the allocation indices between 216 and 223 configure a full-band MU-
MIMO 160 MHz allocation (2x996-tone RU).

As an example, the allocation index 203 specifies a 484-tone RU with 4 users:

cfg484MU = wlanHEMUConfig(203);
showAllocation(cfg484MU,axAlloc)

HE Multi-User Format - OFDMA with RU Sizes Greater Than 242 Subcarriers

For an HE MU transmission with a channel bandwidth greater than 20 MHz, two HE-SIG-B content
channels are used to signal user configurations. These content channels are duplicated over each 40
MHz subchannel for larger channel bandwidths, as described in Section 27.3.10.8.3 of [1]. When an
RU size greater than 242 is specified as part of an OFDMA system, the users assigned to the RU can
be signaled on either of the two HE-SIG-B content channels. The allocation index provided when
creating an wlanHEMUConfig object controls which content channel each user is signaled on. The
allocation table in the Appendix shows the relevant allocation indices.

As an example, consider the following 80 MHz configuration which serves 7 users:

• One 484-tone RU (RU #1) with four users (users #1-4)
• One 242-tone RU (RU #2) with one user (user #5)

 802.11ax Parameterization for Waveform Generation and Simulation

1-35

• Two 106-tone RUs (RU #3 and #4), each with one user (users #6 and #7)

To configure an 80 MHz OFDMA transmission, four allocation indices are required, one for each 20
MHz subchannel. To configure the above scenario the allocation indices below are used:

[X Y 192 96]

• X and Y configure the 484-tone RU, with users #1-4. The possible values of X and Y are discussed
below.

• 192 configures a 242-tone RU with one user, user #5.
• 96 signals two 106-tone RUs, each with one user, users #6 and #7.

The selection of X and Y configures the appropriate number of users in the 242-tone RU, and
determines which HE-SIG-B content channel is used to signal the users. A 484-tone RU spans two 20
MHz subchannels, therefore two allocation indices are required. All seven users from the four RUs
will be signaled on the HE-SIG-B content channels, but for now we will only consider the signaling of
users on the 484-tone RU. For the 484-tone RU, the four users can be signaled on the two HE-SIG-B
content channels in different combinations as shown in Table 1.

An allocation index within the range 200-207 specifies 1-8 users on a 484-tone RU. To signal no users
on a content channel, the allocation index 114 or 115 can be used, for a 448-tone or 996-tone RU.
Therefore, the combinations in Table 1 can be defined using two allocation indices as shown in Table
2. The two allocation indices in each row of Table 2 are X and Y.

Therefore, to configure 'Combination E' the following 80 MHz allocation indices are used:

[114 203 192 96]

• 114 and 203 configure the 484-tone RU, with users #1-4.
• 192 configures a 242-tone RU with one user, user #5.

1 PHY Modeling

1-36

• 96 signals two 106-tone RUs, each with one user, users #6 and #7.

cfg484OFDMA = wlanHEMUConfig([114 203 192 96]);
showAllocation(cfg484OFDMA,axAlloc);

To view the HE-SIG-B allocation signaling, use the hePlotHESIGBAllocationMapping function.
This shows the user fields signaled on each HE-SIG-B content channel, and which RU and user in the
wlanHEMUConfig object, each user field signals. In this case we can see the users on RU #1, 3 and 4
are all signaled on content channel 2, and the user of RU #2 is signaled on content channel 1. The
second content channel signals six users, while the first content channel only signals one user.
Therefore, the first content channel will be padded up to the length of the second for transmission. In
the diagram, the RU allocation information is provided in the form index-size, e.g. RU8-106 is the 8th
106-tone RU.

figure;
hePlotHESIGBAllocationMapping(cfg484OFDMA);
axSIGB = gca; % Get axis handle for subsequent plotting

 802.11ax Parameterization for Waveform Generation and Simulation

1-37

To balance the user field signaling in HE-SIG-B, we can use 'Combination B' in Table 2 when creating
the allocation index for the 484-tone RU. This results in two users being signaled on each content
channel of HE-SIG-B, creating a better balance of user fields, and potentially fewer HE-SIG-B symbols
in the transmission.

cfg484OFDMABalanced = wlanHEMUConfig([201 201 96 192]);
hePlotHESIGBAllocationMapping(cfg484OFDMABalanced,axSIGB);

HE Multi-User Format - Central 26-Tone RU

In an 80 MHz transmission, when a full band RU is not used, the central 26-tone RU can be optionally
active. The central 26-tone RU is enabled using a name-value pair when creating the
wlanHEMUConfig object.

% Create a configuration with no central 26-tone RU
cfgNoCentral = wlanHEMUConfig([192 192 192 192],'LowerCenter26ToneRU',false);
showAllocation(cfgNoCentral,axAlloc);

% Create a configuration with a central 26-tone RU
cfgCentral = wlanHEMUConfig([192 192 192 192],'LowerCenter26ToneRU',true);
showAllocation(cfgCentral,axAlloc);

1 PHY Modeling

1-38

Similarly, for a 160 MHz transmission, the central 26-tone RU in each 80 MHz segment can be
optionally used. Each central 26-tone RU can be enabled using name-value pairs when creating the
wlanHEMUConfig object. In this example only the upper central 26-tone RU is created. Four 242-
tone RUs, each with one user are specified with the allocation index [200 114 114 200 200 114
114 200].

cfgCentral160MHz = wlanHEMUConfig([200 114 114 200 200 114 114 200],'UpperCenter26ToneRU',true);
disp(cfgCentral160MHz)

 wlanHEMUConfig with properties:

 RU: {1x5 cell}
 User: {1x5 cell}
 PrimarySubchannel: 1
 NumTransmitAntennas: 1
 STBC: 0
 GuardInterval: 3.2000
 HELTFType: 4
 SIGBMCS: 0
 SIGBDCM: 0
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0

 Read-only properties:

 802.11ax Parameterization for Waveform Generation and Simulation

1-39

 ChannelBandwidth: 'CBW160'
 AllocationIndex: [200 114 114 200 200 114 114 200]
 LowerCenter26ToneRU: 0
 UpperCenter26ToneRU: 1

HE Multi-User Format - Preamble Puncturing

In an 80 MHz or 160 MHz transmission, 20 MHz subchannels can be punctured to allow a legacy
system to operate in the punctured channel. This method is also described as channel bonding. To
null a 20 MHz subchannel the 20 MHz subchannel allocation index 113 can be used. The punctured
20 MHz subchannel can be viewed with the showAllocation method.

% Null second lowest 20 MHz subchannel in a 160 MHz configuration
cfgNull = wlanHEMUConfig([192 113 114 200 208 115 115 115]);

% Plot the allocation
showAllocation(cfgNull,axAlloc);

The punctured 20 MHz can also be viewed with the generated waveform and the spectrum analyzer.

% Set the transmission properties of each user in all RUs
cfgNull.User{1}.APEPLength = 100;
cfgNull.User{1}.MCS = 2;
cfgNull.User{1}.ChannelCoding = 'LDPC';
cfgNull.User{1}.NumSpaceTimeStreams = 1;

cfgNull.User{2}.APEPLength = 1000;

1 PHY Modeling

1-40

cfgNull.User{2}.MCS = 6;
cfgNull.User{2}.ChannelCoding = 'LDPC';
cfgNull.User{2}.NumSpaceTimeStreams = 1;

cfgNull.User{3}.APEPLength = 100;
cfgNull.User{3}.MCS = 1;
cfgNull.User{3}.ChannelCoding = 'LDPC';
cfgNull.User{3}.NumSpaceTimeStreams = 1;

% Create packet
txNullWaveform = wlanWaveformGenerator([1 0 1 0],cfgNull);

% Visualize signal spectrum
fs = wlanSampleRate(cfgNull);
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgNull,1);
fftsize = ofdmInfo.FFTLength;
spectrumAnalyzer = dsp.SpectrumAnalyzer('SampleRate',fs,...
 'AveragingMethod','Exponential','ForgettingFactor',0.99,...
 'RBWSource','Property','RBW',fs/fftsize,...
 'Title','160 MHz HE MU Transmission with Punctured 20 MHz Channel');
spectrumAnalyzer(txNullWaveform);

 802.11ax Parameterization for Waveform Generation and Simulation

1-41

Trigger-Based MU Format

The HE trigger-based (TB) format allows for OFDMA or MU-MIMO transmission in the uplink. Each
station (STA) transmits a TB packet simultaneously, when triggered by the access point (AP). A TB
transmission is controlled entirely by the AP. All the parameters required for the transmission are
provided in a trigger frame to all STAs participating in the TB transmission. In this example a TB
transmission in response to a trigger frame for three users in an OFDMA/MU-MIMO system is
configured; three STAs will transmit simultaneously to an AP.

The 20 MHz allocation 97 is used which corresponds to two RUs, one of which serves two users in
MU-MIMO.

disp('Allocation #97 table entry:')
disp(allocationTable(98,:)) % Index 97 (row 98)

Allocation #97 table entry:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _________ ___________ _____________ ____

 97 "01100001" 3 2 {[1 2]} {[106 106]} {[1 2]} ""

The allocation information is obtained by creating a MU configuration with wlanHEMUConfig.

% Generate an OFDMA allocation
cfgMU = wlanHEMUConfig(97);
allocationInfo = ruInfo(cfgMU);

In a TB transmission several parameters are the same for all users in the transmission. Some of these
are specified below:

% These parameters are the same for all users in the OFDMA system
trgMethod = 'TriggerFrame'; % Method used to trigger an HE TB PPDU
channelBandwidth = cfgMU.ChannelBandwidth; % Bandwidth of OFDMA system
lsigLength = 142; % L-SIG length
preFECPaddingFactor = 2; % Pre-FEC padding factor
ldpcExtraSymbol = false; % LDPC extra symbol
numHELTFSymbols = 2; % Number of HE-LTF symbols

A TB transmission for a single user within the system is configured with a wlanHETBConfig object.
In this example, a cell array of three objects is created to describe the transmission of the three
users.

% Create a trigger configuration for each user
numUsers = allocationInfo.NumUsers;
cfgTriggerUser = repmat({wlanHETBConfig},1,numUsers);

The non-default system-wide properties are set for each user.

for userIdx = 1:numUsers
 cfgTriggerUser{userIdx}.TriggerMethod = trgMethod;
 cfgTriggerUser{userIdx}.ChannelBandwidth = channelBandwidth;
 cfgTriggerUser{userIdx}.LSIGLength = lsigLength;
 cfgTriggerUser{userIdx}.PreFECPaddingFactor = preFECPaddingFactor;
 cfgTriggerUser{userIdx}.LDPCExtraSymbol = ldpcExtraSymbol;
 cfgTriggerUser{userIdx}.NumHELTFSymbols = numHELTFSymbols;
end

1 PHY Modeling

1-42

Next the per-user properties are set. When multiple users are transmitting in the same RU, in a MU-
MIMO configuration, each user must transmit on different space-time stream indices. The properties
StartingSpaceTimeStream and NumSpaceTimeStreamSteams must be set for each user to make
sure different space-time streams are used. In this example user 1 and 2 are in a MU-MIMO
configuration, therefore StartingSpaceTimeStream for user two is set to 2, as user one is
configured to transmit 1 space-time stream with StartingSpaceTimeStream = 1.

% These parameters are for the first user - RU#1 MU-MIMO user 1
cfgTriggerUser{1}.RUSize = allocationInfo.RUSizes(1);
cfgTriggerUser{1}.RUIndex = allocationInfo.RUIndices(1);
cfgTriggerUser{1}.MCS = 4; % Modulation and coding scheme
cfgTriggerUser{1}.NumSpaceTimeStreams = 1; % Number of space-time streams
cfgTriggerUser{1}.NumTransmitAntennas = 1; % Number of transmit antennas
cfgTriggerUser{1}.StartingSpaceTimeStream = 1; % The starting index of the space-time streams
cfgTriggerUser{1}.ChannelCoding = 'LDPC'; % Channel coding

% These parameters are for the second user - RU#1 MU-MIMO user 2
cfgTriggerUser{2}.RUSize = allocationInfo.RUSizes(1);
cfgTriggerUser{2}.RUIndex = allocationInfo.RUIndices(1);
cfgTriggerUser{2}.MCS = 3; % Modulation and coding scheme
cfgTriggerUser{2}.NumSpaceTimeStreams = 1; % Number of space-time streams
cfgTriggerUser{2}.StartingSpaceTimeStream = 2; % The starting index of the space-time streams
cfgTriggerUser{2}.NumTransmitAntennas = 1; % Number of transmit antennas
cfgTriggerUser{2}.ChannelCoding = 'LDPC'; % Channel coding

% These parameters are for the third user - RU#2
cfgTriggerUser{3}.RUSize = allocationInfo.RUSizes(2);
cfgTriggerUser{3}.RUIndex = allocationInfo.RUIndices(2);
cfgTriggerUser{3}.MCS = 4; % Modulation and coding scheme
cfgTriggerUser{3}.NumSpaceTimeStreams = 2; % Number of space-time streams
cfgTriggerUser{3}.StartingSpaceTimeStream = 1; % The starting index of the space-time streams
cfgTriggerUser{3}.NumTransmitAntennas = 2; % Number of transmit antennas
cfgTriggerUser{3}.ChannelCoding = 'BCC'; % Channel coding

A packet containing random data is now transmitted by each user with wlanWaveformGenerator.
The waveform transmitted by each user is stored for analysis.

trigInd = wlanFieldIndices(cfgTriggerUser{1}); % Get the indices of each field
txTrigStore = zeros(trigInd.HEData(2),numUsers);
for userIdx = 1:numUsers
 % Generate waveform for a user
 cfgTrigger = cfgTriggerUser{userIdx};
 txPSDU = randi([0 1],getPSDULength(cfgTrigger)*8,1);
 txTrig = wlanWaveformGenerator(txPSDU,cfgTrigger);

 % Store the transmitted STA waveform for analysis
 txTrigStore(:,userIdx) = sum(txTrig,2);
end

The spectrum of the transmitted waveform from each STA shows the different portions of the
spectrum used, and the overlap in the MU-MIMO RU.

fs = wlanSampleRate(cfgTriggerUser{1});
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgTriggerUser{1});
spectrumAnalyzer = dsp.SpectrumAnalyzer('SampleRate',fs,...
 'AveragingMethod','Running','SpectralAverages',1,...
 'ChannelNames', {'RU#1 User 1','RU#1 User 2','RU#2'},...

 802.11ax Parameterization for Waveform Generation and Simulation

1-43

 'ShowLegend',true,'Title','Transmitted HE TB Waveform per User');
spectrumAnalyzer(txTrigStore);

Appendix

The RU allocation table for allocations <= 20 MHz is shown below, with annotated descriptions.

1 PHY Modeling

1-44

The RU allocation and HE-SIG-B user signaling for allocations > 20 MHz is shown in the table below,
with annotated descriptions.

Selected Bibliography

1 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

 802.11ax Parameterization for Waveform Generation and Simulation

1-45

Basic WLAN Link Modeling
This example shows how to create a basic WLAN link model using WLAN Toolbox™. An IEEE®
802.11ac™ [1] VHT packet is created, passed through a TGac channel. The received signal is
equalized and decoded in order to recover the transmitted bits.

Introduction

This example shows how a simple transmitter-channel-receiver simulation may be created using
functions from WLAN Toolbox. A VHT transmit and receive link is implemented as shown in the figure
below. A VHT packet is transmitted through a TGac channel, demodulated and the equalized symbols
are recovered. The equalized symbols are decoded to recover the transmitted bits.

Waveform Generation

An 802.11ac VHT transmission is simulated in this example. The transmit parameters for the VHT
format of the 802.11™ standard are configured using a VHT configuration object. The
wlanVHTConfig creates a VHT configuration object. In this example the object is configured for a 20
MHz channel bandwidth, MCS 5 and single transmit antenna.

% Create a format configuration object for a SISO VHT transmission
cfgVHT = wlanVHTConfig;
cfgVHT.NumTransmitAntennas = 1; % Transmit antennas
cfgVHT.NumSpaceTimeStreams = 1; % Space-time streams
cfgVHT.APEPLength = 4096; % APEP length in bytes
cfgVHT.MCS = 5; % Single spatial stream, 64-QAM
cfgVHT.ChannelBandwidth = 'CBW20'; % Transmitted signal bandwidth
Rs = wlanSampleRate(cfgVHT); % Sampling rate

A single VHT packet is generated consisting of training, signal and data fields:

• Non-HT Short Training Field (L-STF)
• Non-HT Long Training Field (L-LTF)
• Non-HT Signal (L-SIG) field
• VHT Signal A (VHT-SIG-A) field
• VHT Short Training Field (VHT-STF)
• VHT Long Training Field (VHT-LTF)
• VHT Signal B (VHT-SIG-B) field
• Data field

These fields are generated separately using functions from WLAN Toolbox and are concatenated to
produce a VHT transmit packet.

The first field in the PPDU is the L-STF and is used for the start of packet detection and automatic
gain control (AGC) setting. It is also used for initial frequency offset estimation and coarse timing
synchronization. The wlanLSTF function generates the L-STF field in the time-domain using some of
the parameters included in configuration object cfgVHT.

1 PHY Modeling

1-46

lstf = wlanLSTF(cfgVHT);

The L-LTF is used for fine time synchronization, channel estimation and fine frequency offset
estimation. The docid:wlan_ref#buz04s0 wlanLLTF> function generates the L-LTF in the time-
domain.

lltf = wlanLLTF(cfgVHT);

The L-SIG field carries packet configuration such as data rate, modulation and code rate for non-HT
format. The wlanLSIG function generates the L-SIG field in the time-domain.

lsig = wlanLSIG(cfgVHT);

The figure below shows the L-STF, L-LTF and L-SIG fields. These fields are common to the VHT, HT-
Mixed and non-HT OFDM transmission formats.

nonHTfield = [lstf;lltf;lsig]; % Combine the non-HT preamble fields

The VHT specific signal and training fields are generated after the non-HT preamble fields. The
purpose of the VHT-SIG-A field is to provide information to allow the receiver to decode the data
payload. The VHT-SIG-A is composed of two symbols VHT-SIG-A1 and VHT-SIG-A2. The wlanVHTSIGA
function generates the VHT-SIG-A field in the time-domain.

vhtsiga = wlanVHTSIGA(cfgVHT);

The purpose of the VHT-STF is to improve the gain control estimation in a MIMO transmission and
help the receiver detect the repeating pattern similar to the L-STF field. The wlanVHTSTF function
generates the VHT-STF field in the time-domain.

 Basic WLAN Link Modeling

1-47

vhtstf = wlanVHTSTF(cfgVHT);

The VHT-LTF provides a mean for the receiver to estimate the channel between the transmitter and
the receiver. Depending on the number of space time streams, it consists of 1,2,4,6 or 8 VHT-LTF
symbols. The wlanVHTLTF function generates the VHT-LTF in the time-domain.

vhtltf = wlanVHTLTF(cfgVHT);

The VHT-SIG-B field is used to set the data rate and the length of the data field payload of the
transmitted packet. The wlanVHTSIGB function generates the VHT-SIG-B field in the time-domain.

vhtsigb = wlanVHTSIGB(cfgVHT);

Construct the preamble with the generated signal and training fields for the VHT format.

preamble = [lstf;lltf;lsig;vhtsiga;vhtstf;vhtltf;vhtsigb];

The wlanVHTData function generates the time-domain VHT data field. The VHT format configuration
cfgVHT specifies the parameters for generating the data field from the PSDU bits. The
cfgVHT.PSDULength property gives the number of bytes to be transmitted in the VHT data field.
This property is used to generate the random PSDU bits txPSDU.

rng(0) % Initialize the random number generator
txPSDU = randi([0 1],cfgVHT.PSDULength*8,1); % Generate PSDU data in bits
data = wlanVHTData(txPSDU,cfgVHT);

% A VHT waveform is constructed by prepending the non-HT and VHT
% preamble fields with data
txWaveform = [preamble;data]; % Transmit VHT PPDU

Alternatively the waveform for a given format configuration can also be generated using a single
function call wlanWaveformGenerator function. This function can produce one or more VHT
packets. By default OFDM windowing is applied to the generated waveform. For more information on
OFDM windowing, see the reference page for the wlanWaveformGenerator function.

Channel Impairments

This section simulates the effects of over-the-air transmission. The transmitted signal is impaired by
the channel and AWGN. The level of the AWGN is given in dBs. In this example the TGac channel
model [2] is used with delay profile Model-B. For this delay profile when the distance between
transmitter and receiver is greater than or equal to 5 meters, the model is in Non-Line-of-Sight (N-
LOS) configuration. This is described further in the help for wlanTGacChannel.

% Parameterize the channel
tgacChannel = wlanTGacChannel;
tgacChannel.DelayProfile = 'Model-B';
tgacChannel.NumTransmitAntennas = cfgVHT.NumTransmitAntennas;
tgacChannel.NumReceiveAntennas = 1;
tgacChannel.LargeScaleFadingEffect = 'None';
tgacChannel.ChannelBandwidth = 'CBW20';
tgacChannel.TransmitReceiveDistance = 5;
tgacChannel.SampleRate = Rs;
tgacChannel.RandomStream = 'mt19937ar with seed';
tgacChannel.Seed = 10;

% Pass signal through the channel. Append zeroes to compensate for channel
% filter delay

1 PHY Modeling

1-48

txWaveform = [txWaveform;zeros(10,1)];
chanOut = tgacChannel(txWaveform);

snr = 40; % In dBs
rxWaveform = awgn(chanOut,snr,0);

% Display the spectrum of the transmitted and received signals. The
% received signal spectrum is affected by the channel
spectrumAnalyzer = dsp.SpectrumAnalyzer('SampleRate',Rs, ...
 'AveragingMethod','Exponential','ForgettingFactor',0.99, ...
 'YLimits',[-30 10],'ShowLegend',true, ...
 'ChannelNames',{'Transmitted waveform','Received waveform'});
spectrumAnalyzer([txWaveform rxWaveform]);

Channel Estimation and Equalization

In this section the time-domain VHT-LTF is extracted from the received waveform. The waveform is
assumed to be synchronized to the start of the packet by taking the channel filter delay into account.
The VHT-LTF is demodulated and is used to estimate the channel. The received signal is then
equalized using the channel estimate obtained from the VHT-LTF.

In this example the received signal is synchronized to the start of the packet by compensating for a
known channel filter delay. For more information on how to automatically detect and synchronize to
the received signal see the following examples:

 Basic WLAN Link Modeling

1-49

• “802.11n Packet Error Rate Simulation for 2x2 TGn Channel” on page 5-17
• “802.11ac Packet Error Rate Simulation for 8x8 TGac Channel” on page 5-11

chInfo = info(tgacChannel); % Get characteristic information
% Channel filter delay, measured in samples
chDelay = chInfo.ChannelFilterDelay;
rxWaveform = rxWaveform(chDelay+1:end,:);

After synchronization the receiver has to extract the relevant fields from the received packet. The
wlanFieldIndices function is used to return the start and end time-domain sample indices of all
fields relative to the first sample in a packet. These indices are used to extract the required fields for
further processing.

indField = wlanFieldIndices(cfgVHT);

An estimate of the noise power after OFDM demodulation is required to perform MMSE equalization
on the received OFDM symbols. In this example the noise power in the VHT fields is estimated using
the demodulated L-LTF symbols.The L-LTF is extracted from the received waveform and is
demodulated using the wlanLLTFDemodulate function.

indLLTF = indField.LLTF(1):indField.LLTF(2);
demodLLTF = wlanLLTFDemodulate(rxWaveform(indLLTF),cfgVHT);
% Estimate noise power in VHT fields
nVar = helperNoiseEstimate(demodLLTF,cfgVHT.ChannelBandwidth,cfgVHT.NumSpaceTimeStreams);

To extract the VHT-LTF from the received signal the start and end indices are used to generate a
vector of indices.

indVHTLTF = indField.VHTLTF(1):indField.VHTLTF(2);

The VHT-LTF is used to estimate the channel between all space-time streams and receive antennas.
The VHT-LTF is extracted from the received waveform and is demodulated using the
wlanVHTLTFDemodulate function.

demodVHTLTF = wlanVHTLTFDemodulate(rxWaveform(indVHTLTF,:),cfgVHT);

The channel estimate includes the effect of the applied spatial mapping and cyclic shifts at the
transmitter for a multi antenna configuration. The wlanVHTLTFChannelEstimate function returns
the estimated channel between all space-time streams and receive antennas.

chanEstVHTLTF = wlanVHTLTFChannelEstimate(demodVHTLTF,cfgVHT);

The transmit signal encounters a deep fade as shown in the channel frequency response in the figure
below. The effect of channel fades can also be seen in the spectrum plot shown previously.

figure
plot(20*log10(abs(chanEstVHTLTF)));
grid on;
title('Estimated Channel Response');
xlabel('Subcarrier index');
ylabel('Power (dB)');

1 PHY Modeling

1-50

To extract the data field from the received signal the start and end indices for the data field are used
to generate a vector of indices.

indData = indField.VHTData(1):indField.VHTData(2);

% Recover the bits and equalized symbols in the VHT Data field using the
% channel estimates from VHT-LTF
[rxPSDU,~,eqSym] = wlanVHTDataRecover(rxWaveform(indData,:),chanEstVHTLTF,nVar,cfgVHT);

% Compare transmit and receive PSDU bits
numErr = biterr(txPSDU,rxPSDU);

The following plot shows the constellation of the equalized symbols at the output of the
wlanVHTDataRecover function compared against the reference constellation. Increasing the
channel noise should begin to spread the distinct constellation points.

% Plot equalized symbols
constellationDiagram = comm.ConstellationDiagram;
constellationDiagram.ReferenceConstellation = wlanReferenceSymbols(cfgVHT);
% Compare received and reference constellation
constellationDiagram(reshape(eqSym,[],1));
constellationDiagram.Title = 'Equalized Data Symbols';

 Basic WLAN Link Modeling

1-51

Appendix

This example uses this helper function.

• helperNoiseEstimate.m

Selected Bibliography

1 IEEE Std 802.11ac™-2013 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

2 Breit, G., H. Sampath, S. Vermani, et al. TGac Channel Model Addendum. Version 12. IEEE
802.11-09/0308r12, March 2010.

1 PHY Modeling

1-52

802.11ac Multi-User MIMO Precoding
This example shows the transmit and receive processing for a 802.11ac™ multi-user downlink
transmission over a fading channel. The example uses linear precoding techniques based on a
singular-value-decomposition (SVD) of the channel.

Introduction

802.11ac supports downlink (access-point to station) multi-user transmissions for up to four users
and up to eight transmit antennas to increase the aggregate throughput of the link [1]. Based on a
scheduled transmission time for a user, the scheduler looks for other smaller packets ready for
transmission to other users. If available, it schedules these users over the same interval, which
reduces the overall time taken for multiple transmissions.

This simultaneous transmission comes at a higher complexity because successful reception of the
individual user's payloads requires precoding, also known as transmit-end beamforming. Precoding
assumes that channel state information (CSI) is known at the transmitter. A sounding packet, as
described in the “802.11ac Transmit Beamforming” on page 3-21 example, is used to determine the
CSI for each user in a multi-user transmission. Each of the users feed back their individual CSI to the
beamformer. The beamformer uses the CSI from all users to set the precoding (spatial mapping)
matrix for subsequent data transmission.

This example uses a channel inversion technique for a three-user transmission with a different
number of spatial streams allocated per user and different rate parameters per user. The system can
be characterized by the figure below.

The example generates the multi-user transmit waveform, passes it through a channel per user and
decodes the received signal for each user to calculate the bits in error. Prior to the data transmission,

 802.11ac Multi-User MIMO Precoding

1-53

the example uses a null-data packet (NDP) transmission to sound the different channels and
determines the precoding matrix under the assumption of perfect feedback.

Simulation Parameters and Configuration

For 802.11ac, a maximum of eight spatial streams is allowed. A 6x6 MIMO configuration for three
users is used in this example, where the first user has three streams, second has one, and the third
has two streams allocated to it. Different rate parameters and payload sizes for up to four users are
specified as vector parameters. These are indexed appropriately in the transmission configuration
based on the number of active users.

s = rng(21); % Set RNG seed for repeatability

% Transmission parameters
chanBW = 'CBW80'; % Channel bandwidth
numUsers = 3; % Number of active users
numSTSAll = [3 1 2 2]; % Number of streams for 4 users
userPos = [0 1 2 3]; % User positions for maximum 4 users
mcsVec = [4 6 2 2]; % MCS for maximum 4 users
apepVec = [15120 8192 5400 6000]; % Payload, in bytes, for 4 users
chCodingVec = {'BCC', 'LDPC', 'LDPC', 'BCC'}; % Channel coding for 4 users

% Channel and receiver parameters
chanMdl = 'Model-A'; % TGac fading channel model
precodingType = 'ZF'; % Precoding type; ZF or MMSE
snr = 38; % SNR in dB
eqMethod = 'ZF'; % Equalization method

% Create the multi-user VHT format configuration object, appropriately
% indexing into the vector values for the active users
if (numUsers==1)
 groupID = 0;
else
 groupID = 2;
end
numSTSVec = numSTSAll(1:numUsers);
numTx = sum(numSTSVec);
cfgVHTMU = wlanVHTConfig('ChannelBandwidth', chanBW,...
 'NumUsers', numUsers, ...
 'NumTransmitAntennas', numTx, ...
 'GroupID', groupID, ...
 'NumSpaceTimeStreams', numSTSVec,...
 'UserPositions', userPos(1:numUsers), ...
 'MCS', mcsVec(1:numUsers), ...
 'APEPLength', apepVec(1:numUsers), ...
 'ChannelCoding', chCodingVec(1:numUsers));

The number of transmit antennas is set to be the sum total of all the used space-time streams. This
implies no space-time block coding (STBC) or spatial expansion is employed for the transmission.

Sounding (NDP) Configuration

For precoding, channel sounding is first used to determine the channel experienced by the users
(receivers). This channel state information is sent back to the transmitter, for it to be used for
subsequent data transmission. It is assumed that the channel varies slowly over the two
transmissions. For multi-user transmissions, the same NDP (Null Data Packet) is transmitted to each
of the scheduled users [2].

1 PHY Modeling

1-54

% VHT sounding (NDP) configuration, for same number of streams
cfgVHTNDP = wlanVHTConfig('ChannelBandwidth', chanBW,...
 'NumUsers', 1, ...
 'NumTransmitAntennas', numTx, ...
 'GroupID', 0, ...
 'NumSpaceTimeStreams', sum(numSTSVec),...
 'MCS', 0, ...
 'APEPLength', 0);

The number of streams specified is the sum total of all space-time streams used. This allows the
complete channel to be sounded.

% Generate the null data packet, with no data
txNDPSig = wlanWaveformGenerator([], cfgVHTNDP);

Transmission Channel

The TGac multi-user channel consists of independent single-user MIMO channels between the access
point and spatially separated stations [4]. In this example, the same delay profile Model-A channel is
applied for each of the users, even though individual users can experience different conditions. The
flat-fading channel allows a simpler receiver without front-end synchronization. It is also assumed
that each user's number of receive antennas are equal to the number of space-time streams allocated
to them.

Cell arrays are used in the example to store per-user elements which allow for a flexible number of
users. Here, as an example, each instance of the TGac channel per user is stored as an element of a
cell array.

% Create three independent channels
TGAC = cell(numUsers, 1);
chanSeeds = [1111 2222 3333 4444]; % chosen for a maximum of 4 users
uIndex = [10 5 2 1]; % chosen for a maximum of 4 users
chanDelay = zeros(numUsers, 1);
for uIdx = 1:numUsers
 TGAC{uIdx} = wlanTGacChannel(...
 'ChannelBandwidth', cfgVHTMU.ChannelBandwidth,...
 'DelayProfile', chanMdl, ...
 'UserIndex', uIndex(uIdx), ...
 'NumTransmitAntennas', numTx, ...
 'NumReceiveAntennas', numSTSVec(uIdx), ...
 'RandomStream', 'mt19937ar with seed', ...
 'Seed', chanSeeds(uIdx),...
 'SampleRate', wlanSampleRate(cfgVHTMU), ...
 'TransmitReceiveDistance',5);
 chanInfo = info(TGAC{uIdx});
 chanDelay(uIdx) = chanInfo.ChannelFilterDelay;
end

The channels for each individual user use different seeds for random number generation. A different
user index is specified to allow for random angle offsets to be applied to the arrival (AoA) and
departure (AoD) angles for the clusters. The channel filtering delay is stored to allow for its
compensation at the receiver. In practice, symbol timing estimation would be used.

% Append zeroes to allow for channel filter delay
txNDPSig = [txNDPSig; zeros(10, numTx)];

% Sound the independent channels per user for all transmit streams

 802.11ac Multi-User MIMO Precoding

1-55

rxNDPSig = cell(numUsers, 1);
for uIdx = 1:numUsers
 rxNDPChan = TGAC{uIdx}(txNDPSig);

 % Add WGN per receiver
 rxNDPSig{uIdx} = awgn(rxNDPChan, snr);
end

Channel State Information Feedback

Each user estimates its own channel using the received NDP signal and computes the channel state
information that it can send back to the transmitter. This example uses the singular value
decomposition of the channel seen by each user to compute the CSI feedback.

mat = cell(numUsers,1);
for uIdx = 1:numUsers
 % Compute the feedback matrix based on received signal per user
 mat{uIdx} = vhtCSIFeedback(rxNDPSig{uIdx}(chanDelay(uIdx)+1:end,:), ...
 cfgVHTNDP, uIdx, numSTSVec);
end

Assuming perfect feedback, with no compression or quantization loss of the CSI, the transmitter
computes the steering matrix for the data transmission using either Zero-Forcing or Minimum-Mean-
Square-Error (MMSE) based precoding techniques. Both methods attempt to cancel out the intra-
stream interference for the user of interest and interference due to other users. The MMSE-based
approach avoids the noise enhancement inherent in the zero-forcing technique. As a result, it
performs better at low SNRs.

% Pack the per user CSI into a matrix
numST = length(mat{1}); % Number of subcarriers
steeringMatrix = zeros(numST, sum(numSTSVec), sum(numSTSVec));
% Nst-by-Nt-by-Nsts
for uIdx = 1:numUsers
 stsIdx = sum(numSTSVec(1:uIdx-1))+(1:numSTSVec(uIdx));
 steeringMatrix(:,:,stsIdx) = mat{uIdx}; % Nst-by-Nt-by-Nsts
end

% Zero-forcing or MMSE precoding solution
if strcmp(precodingType, 'ZF')
 delta = 0; % Zero-forcing
else
 delta = (numTx/(10^(snr/10))) * eye(numTx); % MMSE
end
for i = 1:numST
 % Channel inversion precoding
 h = squeeze(steeringMatrix(i,:,:));
 steeringMatrix(i,:,:) = h/(h'*h + delta);
end

% Set the spatial mapping based on the steering matrix
cfgVHTMU.SpatialMapping = 'Custom';
cfgVHTMU.SpatialMappingMatrix = permute(steeringMatrix,[1 3 2]);

Data Transmission

Random bits are used as the payload for the individual users. A cell array is used to hold the data bits
for each user, txDataBits. For a multi-user transmission the individual user payloads are padded

1 PHY Modeling

1-56

such that the transmission duration is the same for all users. This padding process is described in
Section 9.12.6 of [1]. In this example for simplicity the payload is padded with zeros to create a
PSDU for each user.

% Create data sequences, one for each user
txDataBits = cell(numUsers, 1);
psduDataBits = cell(numUsers, 1);
for uIdx = 1:numUsers
 % Generate payload for each user
 txDataBits{uIdx} = randi([0 1], cfgVHTMU.APEPLength(uIdx)*8, 1, 'int8');

 % Pad payload with zeros to form a PSDU
 psduDataBits{uIdx} = [txDataBits{uIdx}; ...
 zeros((cfgVHTMU.PSDULength(uIdx)-cfgVHTMU.APEPLength(uIdx))*8, 1, 'int8')];
end

Using the format configuration, cfgVHTMU, with the steering matrix, the data is transmitted over the
fading channel.

% Generate the multi-user VHT waveform
txSig = wlanWaveformGenerator(psduDataBits, cfgVHTMU);

% Transmit through per-user fading channel
rxSig = cell(numUsers, 1);
for uIdx = 1:numUsers
 % Append zeroes to allow for channel filter delay
 rxSig{uIdx} = TGAC{uIdx}([txSig; zeros(10, numTx)]);
end

Data Recovery Per User

The receive signals for each user are processed individually. The example assumes that there are no
front-end impairments and that the transmit configuration is known by the receiver for simplicity.

A user number specifies the user of interest being decoded for the transmission. This is also used to
index into the vector properties of the configuration object that are user-specific.

% Get field indices from configuration, assumed known at receiver
ind = wlanFieldIndices(cfgVHTMU);

% Single-user receivers recover payload bits
rxDataBits = cell(numUsers, 1);
scaler = zeros(numUsers, 1);
spAxes = gobjects(sum(numSTSVec), 1);
hfig = figure('Name','Per-stream equalized symbol constellation');
for uIdx = 1:numUsers
 % Add WGN per receiver
 rxNSig = awgn(rxSig{uIdx}, snr);
 rxNSig = rxNSig(chanDelay(uIdx)+1:end, :);

 % User space-time streams
 stsU = numSTSVec(uIdx);

 % Perform channel estimation based on VHT-LTF
 rxVHTLTF = rxNSig(ind.VHTLTF(1):ind.VHTLTF(2),:);
 demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF, chanBW, numSTSVec);
 chanEst = wlanVHTLTFChannelEstimate(demodVHTLTF, chanBW, numSTSVec);

 802.11ac Multi-User MIMO Precoding

1-57

 % Get single stream channel estimate
 chanEstSSPilots = vhtSingleStreamChannelEstimate(demodVHTLTF,cfgVHTMU);

 % Extract VHT Data samples from the waveform
 rxVHTData = rxNSig(ind.VHTData(1):ind.VHTData(2),:);

 % Estimate the noise power in VHT data field
 nVar = vhtNoiseEstimate(rxVHTData,chanEstSSPilots,cfgVHTMU);

 % Recover information bits in VHT Data field
 [rxDataBits{uIdx}, ~, eqsym] = wlanVHTDataRecover(rxVHTData, ...
 chanEst, nVar, cfgVHTMU, uIdx, 'EqualizationMethod', eqMethod, ...
 'PilotPhaseTracking', 'None', 'LDPCDecodingMethod', 'layered-bp');

 % Plot equalized symbols for all streams per user
 scaler(uIdx) = ceil(max(abs([real(eqsym(:)); imag(eqsym(:))])));
 for i = 1:stsU
 subplot(numUsers, max(numSTSVec), (uIdx-1)*max(numSTSVec)+i);
 plot(reshape(eqsym(:,:,i), [], 1), '.');
 axis square
 spAxes(sum([0 numSTSVec(1:(uIdx-1))])+i) = gca; % Store axes handle
 title(['User ' num2str(uIdx) ', Stream ' num2str(i)]);
 grid on;
 end
end

% Scale axes for all subplots and scale figure
for i = 1:numel(spAxes)
 xlim(spAxes(i),[-max(scaler) max(scaler)]);
 ylim(spAxes(i),[-max(scaler) max(scaler)]);
end
pos = get(hfig, 'Position');
set(hfig, 'Position', [pos(1)*0.7 pos(2)*0.7 1.3*pos(3) 1.3*pos(4)]);

1 PHY Modeling

1-58

Per-stream equalized symbol constellation plots validate the simulation parameters and convey the
effectiveness of the technique. Note the discernible 16QAM, 64QAM and QPSK constellations per
user as specified on the transmit end. Also observe the EVM degradation over the different streams
for an individual user. This is a representative characteristic of the channel inversion technique.

The recovered data bits are compared with the transmitted payload bits to determine the bit error
rate.

% Compare recovered bits against per-user APEPLength information bits
ber = inf(1, numUsers);
for uIdx = 1:numUsers
 idx = (1:cfgVHTMU.APEPLength(uIdx)*8).';
 [~, ber(uIdx)] = biterr(txDataBits{uIdx}(idx), rxDataBits{uIdx}(idx));
 disp(['Bit Error Rate for User ' num2str(uIdx) ': ' num2str(ber(uIdx))]);
end

rng(s); % Restore RNG state

Bit Error Rate for User 1: 0.00013228
Bit Error Rate for User 2: 0
Bit Error Rate for User 3: 0

 802.11ac Multi-User MIMO Precoding

1-59

The small number of bit errors, within noise variance, indicate successful data decoding for all
streams for each user, despite the variation in EVMs seen in individual streams.

Conclusion and Further Exploration

The example shows multi-user transmit configuration, independent per-user channel modeling, and
the individual receive processing using the channel inversion precoding techniques.

Further exploration includes modifications to the transmission and channel parameters, alternate
precoding techniques, more realistic receivers and feedback mechanism incorporating delays and
quantization.

Appendix

This example uses the following helper functions:

• vhtBeamformingRemoveCSD.m
• vhtCSIFeedback.m
• vhtNoiseEstimate.m
• vhtSingleStreamChannelEstimate.m

Selected Bibliography

1 IEEE Std 802.11ac™-2013 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

2 Perahia, E., R. Stacey, "Next Generation Wireless LANS: 802.11n and 802.11ac", Cambridge
University Press, 2013.

3 IEEE Std 802.11™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

4 Breit, G., H. Sampath, S. Vermani, et al., "TGac Channel Model Addendum", Version 12. IEEE
802.11-09/0308r12, March 2010.

1 PHY Modeling

1-60

matlab:edit('vhtBeamformingRemoveCSD.m))

MAC Modeling

2

802.11 MAC Frame Generation
This example shows how to generate IEEE® 802.11™ MAC frames.

Introduction

This example shows how WLAN MAC frames specified in Section 9 of [1] and [2] can be generated
and exported to a packet capture (PCAP) file for analysis with third-party packet analysis tools. In this
example Wireshark [3] is used to verify the content of MAC frames is as expected.

The general MAC frame format consists of a header, frame-body, and frame check sequence (FCS).
The header holds information about the frame. The frame-body carries data that needs to be
transmitted. The transmitter calculates the FCS over the header and frame-body. The receiver uses
the FCS to confirm that the header and frame-body are properly received. The following diagram
shows the structure of a general MAC frame.

2 MAC Modeling

2-2

The standard specifies four types of frames: Management, Data, Control, and Extension. There are
multiple subtypes of each frame type. These are identified by the Type and Subtype fields of the
frame control field in the MAC header.

Management Frames:

• Frames that are used for connection establishment and maintenance.
• These frames carry the information fields and elements that indicate the capabilities and
configuration of the device operating in the 802.11 network. While establishing the connection,
these information fields and elements are communicated between the devices to match
capabilities of both devices.

• The MAC layer adds header and FCS to the frame-body carrying the information to form a MAC
protocol data unit (MPDU).

Data Frames:

• Frames that are used to transmit the higher-layer data.
• The payload given to the MAC layer is termed MAC service data unit (MSDU). The MAC layer

adds header and FCS to the MSDU to form a MAC protocol data unit (MPDU).
• To improve the throughput, WLAN supports aggregated MSDUs (A-MSDUs) and aggregated

MPDUs (A-MPDUs) as specified in Sections 9.3.2.2, 9.7 of [1] and [2].

 802.11 MAC Frame Generation

2-3

• If MSDU aggregation is enabled, multiple MSDUs are aggregated to form an A-MSDU and then
the MAC header and FCS are added to an A-MSDU to form an MPDU.

• If MPDU aggregation is enabled, multiple MPDUs are aggregated to form an A-MPDU.

Control Frames:

• Frames that are used to support the delivery of data, management, and extension frames.
• Each control frame has a specific functionality. For example, control frames like request-to-send

(RTS) and clear-to-send (CTS) help in reserving the channel to avoid collisions, while Ack frames
help in recognizing successful transmission.

Extension Frames:

• This frame type is an extension to the three frame types defined above.
• DMG Beacon is the only frame currently specified under this frame type in [1].

You can use the wlanMACFrame function to generate MAC frames. This function accepts a MAC
frame configuration object wlanMACFrameConfig as an input. This object configures the fields in the
MAC header. Set the FrameType property to the desired Subtype description in Table 9-1 of [1] to
set the appropriate Type and Subtype fields in the MAC header. The wlanMACFrame function
supports the generation of following MPDUs.

• Management Frames: Beacon
• Data Frames: Data, Null, QoS Data, QoS Null
• Control Frames: RTS, CTS, Ack, Block Ack

In addition to the above MPDUs, wlanMACFrame also supports generation of A-MPDUs containing
MPDUs of type QoS Data.

Control Frame Generation

To generate an RTS frame, create a MAC frame configuration object with the FrameType set to
'RTS'.

rtsCfg = wlanMACFrameConfig('FrameType', 'RTS');
disp(rtsCfg);

 wlanMACFrameConfig with properties:

 FrameType: 'RTS'
 PowerManagement: 0
 MoreData: 0
 Duration: 0
 Address1: 'FFFFFFFFFFFF'
 Address2: '00123456789B'

 Read-only properties:
 Decoded: 0

Configure the frame header fields.

% Duration
rtsCfg.Duration = 500;
% Receiver address

2 MAC Modeling

2-4

rtsCfg.Address1 = 'FCF8B0102001';
% Transmitter address
rtsCfg.Address2 = 'FCF8B0102002';

Generate an RTS frame using the configuration.

% Generate octets for an RTS frame
rtsFrame = wlanMACFrame(rtsCfg);

By default, the output of wlanMACFrame is a sequence of hexadecimal octets. If you want to generate
the MAC frame as a sequence of bits, set the OutputFormat parameter to bits.

% Generate bits for an RTS frame
rtsFrameBits = wlanMACFrame(rtsCfg, 'OutputFormat', 'bits');

Data Frame Generation

To generate a QoS Data frame, create a MAC frame configuration object with the FrameType set to
'QoS Data'.

qosDataCfg = wlanMACFrameConfig('FrameType', 'QoS Data');
disp(qosDataCfg);

 wlanMACFrameConfig with properties:

 FrameType: 'QoS Data'
 FrameFormat: 'Non-HT'
 ToDS: 0
 FromDS: 1
 Retransmission: 0
 PowerManagement: 0
 MoreData: 0
 Duration: 0
 Address1: 'FFFFFFFFFFFF'
 Address2: '00123456789B'
 Address3: '00123456789B'
 SequenceNumber: 0
 TID: 0
 AckPolicy: 'No Ack'
 MSDUAggregation: 0

 Read-only properties:
 Decoded: 0

Configure the frame header fields.

% From DS flag
qosDataCfg.FromDS = 1;
% To DS flag
qosDataCfg.ToDS = 0;
% Acknowledgment Policy
qosDataCfg.AckPolicy = 'Normal Ack';
% Receiver address
qosDataCfg.Address1 = 'FCF8B0102001';
% Transmitter address
qosDataCfg.Address2 = 'FCF8B0102002';

 802.11 MAC Frame Generation

2-5

The QoS Data frame is used to transmit a payload from higher-layer. A 20-byte payload containing a
repeating sequence of hexadecimal value '11' is used in this example.

payload = repmat('11', 1, 20);

Generate a QoS Data frame using payload and configuration.

% Generate octets for a QoS Data frame
qosDataFrame = wlanMACFrame(payload, qosDataCfg);

By default, the output of wlanMACFrame is a sequence of hexadecimal octets. If you want to generate
the MAC frame as a sequence of bits, set the OutputFormat parameter to bits.

% Generate bits for a QoS Data frame
qosDataFrameBits = wlanMACFrame(payload, qosDataCfg, 'OutputFormat', 'bits');

The output MAC frame is an MPDU with a single MSDU. Refer to the example “802.11ac Waveform
Generation with MAC Frames” on page 2-18 for A-MSDU and A-MPDU generation.

Management Frame Generation

To generate a Beacon frame, create a MAC frame configuration object with the FrameType set to
'Beacon'.

beaconCfg = wlanMACFrameConfig('FrameType', 'Beacon');
disp(beaconCfg);

 wlanMACFrameConfig with properties:

 FrameType: 'Beacon'
 ToDS: 0
 FromDS: 1
 Retransmission: 0
 PowerManagement: 0
 MoreData: 0
 Duration: 0
 Address1: 'FFFFFFFFFFFF'
 Address2: '00123456789B'
 Address3: '00123456789B'
 SequenceNumber: 0
 ManagementConfig: [1x1 wlanMACManagementConfig]

 Read-only properties:
 Decoded: 0

Beacon frame-body consists of information fields and information elements as explained in Section
9.3.3.3 of [1]. You can configure these information fields and elements using
wlanMACManagementConfig.

% Create a management frame-body configuration object
frameBodyCfg = wlanMACManagementConfig;
disp(frameBodyCfg);

 wlanMACManagementConfig with properties:

 FrameType: 'Beacon'
 Timestamp: 0

2 MAC Modeling

2-6

 BeaconInterval: 100
 ESSCapability: 1
 IBSSCapability: 0
 Privacy: 0
 ShortPreamble: 0
 SpectrumManagement: 0
 QoSSupport: 1
 ShortSlotTimeUsed: 0
 APSDSupport: 0
 RadioMeasurement: 0
 DelayedBlockAckSupport: 0
 ImmediateBlockAckSupport: 0
 SSID: 'default SSID'
 BasicRates: {'6 Mbps' '12 Mbps' '24 Mbps'}
 AdditionalRates: {}

 Read-only properties:
 InformationElements: {511x2 cell}

Configure the information fields and elements in the frame-body configuration. You can add
information elements using addIE(elementID, information) method as shown below. Refer
Section 9.4 in [1] for the list of information fields and information elements.

% Beacon Interval
frameBodyCfg.BeaconInterval = 100;
% Timestamp
frameBodyCfg.Timestamp = 123456;
% SSID
frameBodyCfg.SSID = 'TEST_BEACON';
% Add DS Parameter IE (element ID - 3) with channel number 11 (0x0b)
frameBodyCfg = frameBodyCfg.addIE(3, '0b');

Assign the updated frame-body configuration object to the ManagementConfig property in the MAC
frame configuration.

% Update management frame-body configuration
beaconCfg.ManagementConfig = frameBodyCfg;

Generate the Beacon frame with the updated frame configuration.

% Generate octets for a Beacon frame
beaconFrame = wlanMACFrame(beaconCfg);

By default, the output of wlanMACFrame is a sequence of hexadecimal octets. If you want to generate
the MAC frame as a sequence of bits, set the OutputFormat parameter to bits.

% Generate bits for a Beacon frame
beaconFrameBits = wlanMACFrame(beaconCfg, 'OutputFormat', 'bits');

Exporting to a PCAP File

This example uses pcapWriter object to export the generated MAC frames to a file with .pcap
extension. To analyze and visualize this file, use a third-party packet analyzer such as Wireshark. To
export the generated MAC frames to a file with .pcapng extension, use pcapngWriter object.

Create an object of type pcapWriter and specify the packet capture file name. The constants
wlanLinkType and timestamp specifies the link layer header type [4] and the capture time of a

 802.11 MAC Frame Generation

2-7

WLAN frame, respectively. In this example, the capture time is same for all the frames. Before writing
packets to the file with .pcap or .pcapng extension, use writeGlobalHeader function to write a
global header to the file.

timestamp = 124800; % Timestamp (in microseconds)
wlanLinkType = 105; % Link-layer header type
fileName = 'macFrames';
% Delete if a file with the same name already exists in the current
% directory
if isfile([fileName, '.pcap'])
 delete([fileName, '.pcap']);
end
pcap = pcapWriter('FileName', 'macFrames');
writeGlobalHeader(pcap, wlanLinkType); % Global header in pcap file

Use the write function to write all the MAC frames to a PCAP file

% MAC frames to be exported to a PCAP file
frames = {rtsFrame, qosDataFrame, beaconFrame};

% Write all the packets to the PCAP file
for idx = 1:numel(frames)
 write(pcap, frames{idx}, timestamp);
end

% Clear the object
clear pcap;

Visualization of the Generated MAC Frames

You can open the PCAP files containing the generated MAC frames in a packet analyzer. The frames
decoded by the Wireshark match the standard compliant MAC frames generated using the WLAN
Toolbox. This figure shows the analysis of the captured MAC frames in Wireshark.

• RTS frame

• QoS Data frame

2 MAC Modeling

2-8

• Beacon frame

 802.11 MAC Frame Generation

2-9

Conclusion and Further Exploration

This example demonstrated generation of MAC frames for the IEEE 802.11 standard. You can use a
packet analyzer to view the generated MAC frames. To transmit the generated MAC frames over air,
refer “802.11 OFDM Beacon Frame Generation” on page 2-24 and “802.11ac Waveform Generation
with MAC Frames” on page 2-18 examples.

Selected Bibliography
1 IEEE Std 802.11™-2016 IEEE Standard for Information technology - Telecommunications and

information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications

2 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems Local and metropolitan area networks - Specific
requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN

2 MAC Modeling

2-10

3 Wireshark · Go Deep. https://www.wireshark.org/. Accessed 30 June 2020
4 Group, The Tcpdump. Tcpdump/Libpcap Public Repository. https://www.tcpdump.org. Accessed

30 June 2020

 802.11 MAC Frame Generation

2-11

https://www.wireshark.org/
https://www.tcpdump.org

802.11 MAC Frame Decoding
This example shows how to decode IEEE® 802.11™ MAC frames.

Background

The general MAC frame format consists of a header, frame-body, and frame check sequence (FCS).
The header holds information about the frame. The frame-body carries data that needs to be
transmitted. The transmitter calculates the FCS over the header and frame-body. The receiver uses
the FCS to confirm that the header and frame-body are properly received. The following diagram
shows the structure of a general MAC frame.

The standard specifies four types of frames: Management, Data, Control, and Extension. There are
multiple subtypes of each frame type. These are identified by the Type and Subtype fields of the
frame control field in the MAC header.

Management Frames:

• Frames that are used for connection establishment and maintenance.
• These frames carry the information fields and elements that indicate the capabilities and
configuration of the device operating in the 802.11 network. While establishing the connection,

2 MAC Modeling

2-12

these information fields and elements are communicated between the devices to match
capabilities of both devices.

• The MAC layer adds header and FCS to the frame-body carrying the information to form a MAC
protocol data unit (MPDU).

Data Frames:

• Frames that are used to transmit the higher-layer data.
• The payload given to the MAC layer is termed MAC service data unit (MSDU). The MAC layer

adds header and FCS to the MSDU to form an MPDU.
• To improve the throughput, WLAN supports aggregated MSDUs (A-MSDUs) and aggregated

MPDUs (A-MPDUs) as specified in Sections 9.3.2.2, 9.7 of [1] and [2].
• If MSDU aggregation is enabled, multiple MSDUs are aggregated to form an A-MSDU and then

the MAC header and FCS are added to an A-MSDU to form an MPDU.
• If MPDU aggregation is enabled, multiple MPDUs are aggregated to form an A-MPDU.

Control Frames:

• Frames that are used to support the delivery of data, management and extension frames.
• Each control frame has a specific functionality. For instance, control frames like request-to-send

(RTS) and clear-to-send (CTS) help in reserving the channel to avoid collisions, while Ack frames
help in recognizing successful transmission.

Extension Frames:

• This frame type is an extension to the three frame types defined above.
• DMG Beacon is the only frame currently specified under this frame type in [1].

Introduction

This example shows how WLAN MAC frames specified in Section 9.3 of [1] or [2] can be decoded.
It also shows how aggregated MAC frames specified in Section 9.7 of [1] or [2] can be
deaggregated.

WLAN Toolbox™ supports MPDU decoding for the following MAC frames:

• Management Frames: Beacon
• Data Frames: Data, Null, QoS Data, QoS Null
• Control Frames: RTS, CTS, Ack, Block Ack

In addition to MPDU decoding, WLAN Toolbox also supports deaggregation of an A-MPDU.

MPDU Decoding

An MPDU can be a data, control or management frame type. wlanMPDUDecode can be used to
decode an MPDU. This function processes the given MPDU and a physical layer configuration object
to output the decoded MAC parameters.

To illustrate MPDU decoding, a valid MPDU is created using wlanMACFrame. The created MPDU is
passed to the wlanMPDUDecode function and the outputs are observed.

 802.11 MAC Frame Decoding

2-13

Create an MPDU

A QoS Data frame is created for this example using wlanMACFrame. The following inputs are
required to form a Non-HT format QoS Data frame containing a 40-octet payload:

1 txFrameCfg : A MAC frame configuration object of type wlanMACFrameConfig.
2 txMSDU : A 40-octet payload (MSDU) to be included in the QoS Data frame.

% Create a MAC frame configuration object
txFrameCfg = wlanMACFrameConfig('FrameType', 'QoS Data', ...
 'FrameFormat', 'Non-HT');

% 40-octet payload for each 'QoS Data' frame
txMSDU = randi([0, 255], 40, 1);

% Physical layer configuration
phyCfg = wlanNonHTConfig;

% Create the MPDU
mpdu = wlanMACFrame(txMSDU, txFrameCfg);

Decode the MPDU

wlanMPDUDecode consumes an MPDU, a PHY configuration object of type wlanNonHTConfig,
wlanHTConfig, wlanVHTConfig, or wlanHESUConfig and optionally a (Name, Value) pair for
DataFormat specifying the input format of the MPDU. Since the MPDU generated using
wlanMACFrame is in terms of octets, DataFormat is set to octets. wlanMPDUDecode decodes the
MPDU and outputs the following information:

1 rxFrameCfg : A MAC frame configuration object of type wlanMACFrameConfig, containing the
decoded MAC parameters.

2 rxMSDU : A cell array, where each element is an n-by-2 character array representing the decoded
MSDU. Multiple MSDUs are returned when the MPDU contains an aggregated MSDU (A-MSDU)
as the payload.

3 status : An enumeration of type “status”, which indicates whether the MPDU decoding was
successful.

% Decode the MPDU.
[rxFrameCfg, rxMSDU, status] = wlanMPDUDecode(mpdu, phyCfg, ...
 'DataFormat', 'octets');

% Check if the MPDU is decoded successfully
disp(['Status of the MPDU decoding: ' char(status)])

2 MAC Modeling

2-14

% Observe the outputs, if the MPDU is decoded successfully
if strcmp(status, 'Success')
 disp(['Type of the decoded MPDU: ' rxFrameCfg.FrameType])
 disp(['Number of MSDUs in the MPDU: ' num2str(numel(rxMSDU))])
 for i = 1:numel(rxMSDU)
 disp(['Size of MSDU-' num2str(i) ': ' num2str(size(rxMSDU{i}, 1)) ' octets'])
 end
end

Status of the MPDU decoding: Success
Type of the decoded MPDU: QoS Data
Number of MSDUs in the MPDU: 1
Size of MSDU-1: 40 octets

A-MPDU Deaggregation

An A-MPDU is an aggregation of multiple MPDUs. The type of MPDUs in an A-MPDU are restricted as
specified in Section 9.7.3 of [1].

wlanAMPDUDeaggregate can be used to deaggregate an A-MPDU. This function processes the given
A-MPDU and the corresponding physical layer configuration object to output the deaggregated list of
MPDUs. wlanAMPDUDeaggregate is capable of decoding HT (High Throughput), VHT (Very High
Throughput), HE-SU (High Efficiency Single User) and HE-EXT-SU (High Efficiency Extended Range
Single User) format A-MPDUs as specified in [1] and [2].

To illustrate the A-MPDU deaggregation, a valid A-MPDU containing five MPDUs is created using
wlanMACFrame. The created A-MPDU is passed to the wlanAMPDUDeaggregate function and the
outputs are observed.

Create an A-MPDU

The following inputs are required to form an HE-SU format A-MPDU containing five MPDUs (QoS
Data frames), each MPDU containing a 40-octet payload:

1 txFrameCfg : A MAC frame configuration object of type wlanMACFrameConfig.
2 txMSDUList : A five element cell array containing payload (MSDU) for five MPDUs. Since

MSDUAggregation is set to false in the txFrameCfg, a separate MPDU is created for each
MSDU.

3 phyCfg : A physical layer configuration object of type wlanHESUConfig.

 802.11 MAC Frame Decoding

2-15

% Create a MAC frame configuration object
txFrameCfg = wlanMACFrameConfig('FrameType', 'QoS Data', ...
 'FrameFormat', 'HE-SU', ...
 'MPDUAggregation', true, ...
 'MSDUAggregation', false);

% 40-octet payload for each 'QoS Data' frame
txMSDUList = repmat({randi([0, 255], 40, 1)}, 1, 5);

% Physical layer configuration
phyCfg = wlanHESUConfig('MCS', 3);

% Create the A-MPDU containing 5 MPDUs
ampdu = wlanMACFrame(txMSDUList, txFrameCfg, phyCfg);

Deaggregate the A-MPDU

wlanAMPDUDeaggregate consumes an A-MPDU, a PHY configuration object of type wlanHTConfig,
wlanVHTConfig, or wlanHESUConfig and optionally a (Name, Value) pair for DataFormat
specifying the input format of the A-MPDU. It finds and validates the MPDU delimiters, extracts the
MPDUs and outputs the following information that can be used for further processing the MPDUs:

1 mpduList : A cell array containing the list of MPDUs extracted from the A-MPDU.
2 delimCRCFails : A logical row vector representing delimiter CRC validity for the corresponding

index in mpduList. A value of true represents that the MPDU present in mpduList at the
corresponding index may not be properly extracted.

3 ampduStatus : An enumeration of type “status”, which indicates whether the A-MPDU
deaggregation was successful.

% Deaggregate the A-MPDU
[mpduList, delimCRCFails, ampduStatus] = wlanAMPDUDeaggregate(ampdu, phyCfg, ...
 'DataFormat', 'octets');

% Observe the outputs
disp(['Status of A-MPDU deaggregation: ' char(ampduStatus)])
disp(['Number of MPDUs extracted from the A-MPDU: ' num2str(numel(mpduList))])
disp(['Number of MPDUs with delimiter CRC fails: ' num2str(nnz(delimCRCFails))])

Status of A-MPDU deaggregation: Success
Number of MPDUs extracted from the A-MPDU: 5
Number of MPDUs with delimiter CRC fails: 0

Decode the list of MPDUs

The mpduList contains the list of MPDUs extracted from the A-MPDU. Each of the MPDUs present in
the list can be decoded separately. However, if the delimCRCFails contains any true values, the
MPDU present in mpduList at the corresponding index can be considered invalid as it may not be
properly extracted because of the delimiter CRC failure.

% Decode the list of MPDUs
if strcmp(ampduStatus, 'Success')
 % Number of MPDUs in the list
 numMPDUs = numel(mpduList);

 for i = 1:numMPDUs
 % Decode the MPDU only if the corresponding delimiter CRC is valid

2 MAC Modeling

2-16

 if ~delimCRCFails(i)
 [rxFrameCfg, rxMSDU, mpduStatus] = wlanMPDUDecode(mpduList{i}, phyCfg, ...
 'DataFormat', 'octets');
 disp(['MPDU-' num2str(i) ' decoding status: ' char(mpduStatus)])
 disp(['MPDU-' num2str(i) ' type: ' rxFrameCfg.FrameType])
 disp(['MPDU-' num2str(i) ' payload size: ' num2str(size(rxMSDU{1}, 1)) ' octets'])
 disp(' ')
 end
 end
end

MPDU-1 decoding status: Success
MPDU-1 type: QoS Data
MPDU-1 payload size: 40 octets

MPDU-2 decoding status: Success
MPDU-2 type: QoS Data
MPDU-2 payload size: 40 octets

MPDU-3 decoding status: Success
MPDU-3 type: QoS Data
MPDU-3 payload size: 40 octets

MPDU-4 decoding status: Success
MPDU-4 type: QoS Data
MPDU-4 payload size: 40 octets

MPDU-5 decoding status: Success
MPDU-5 type: QoS Data
MPDU-5 payload size: 40 octets

Conclusion and Further Exploration

This example demonstrated how to deaggregate and decode IEEE 802.11 MAC frames. You can also
explore “802.11 OFDM Beacon Receiver with Captured Data” on page 4-41 and “Recovery
Procedure for an 802.11ac Packet” on page 4-30 examples for decoding the MAC frames retrieved
from the captured waveforms.

Selected Bibliography

1 IEEE Std 802.11™-2016 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications

2 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems Local and metropolitan area networks - Specific
requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN

 802.11 MAC Frame Decoding

2-17

802.11ac Waveform Generation with MAC Frames
This example shows how to generate an IEEE® 802.11ac™ transmission containing MAC frames
suitable for performing radio packet error rate (PER) receiver tests.

Introduction

WLAN Toolbox™ can be used to generate standard compliant waveforms for performing receiver
tests. A basic WLAN receiver test scenario is shown in the diagram below.

The device under test (DUT) is stimulated with RF test vectors, usually through a wired link. The
packet error rate (PER) is a metric used to test the performance of a receiver at a given receive
signal power in the presence of noise, interference, or other impairments. The PER is defined as the
number of incorrectly decoded packets divided by the total number of transmitted packets.

The frame check sequence (FCS) within a MAC frame is used to determine whether a MAC frame has
been decoded correctly by the receiver, and therefore whether the packet has been received in error.
The general MAC frame for IEEE 802.11ac contains the following fields:

• MAC header
• Frame body
• FCS

The data to transmit from a higher layer is contained within the frame body of the MAC frame. The
transmitter uses a cyclic redundancy check over the MAC header and frame body field to generate
the FCS value. The receiver calculates the CRC and compares this to the received FCS field to
determine if an error has occurred during transmission.

In this example an IEEE 802.11ac waveform consisting of multiple VHT format packets is generated.
The wlanWaveformGenerator function can be used to generate a waveform containing one or more
packets. The wlanWaveformGenerator function consumes physical layer service data units (PSDUs)
for each packet and performs the appropriate physical layer processing to create the waveform. A
PSDU containing a MAC header and valid FCS can be generated using the wlanMACFrame function.
In this example a multi-packet baseband waveform containing MAC packets is synthesized. This
waveform may be downloaded to a signal generator for RF transmission and used for receiver PER
testing. Source code is provided to download and play the waveform using a Keysight Technologies™
N5172B signal generator. The example processing is illustrated in the following diagram:

2 MAC Modeling

2-18

IEEE 802.11ac VHT Format Configuration

The format-specific configuration of a VHT waveform synthesized with the
wlanWaveformGenerator function is described by the VHT format configuration object,
wlanVHTConfig. The properties of the object contain the configuration. In this example an object is
configured for a 160 MHz bandwidth, 1 transmit antenna, 1 space-time stream and QPSK rate 1/2
(MCS 1).

vhtCfg = wlanVHTConfig; % Create packet configuration
vhtCfg.ChannelBandwidth = 'CBW160'; % 160 MHz channel bandwidth
vhtCfg.NumTransmitAntennas = 1; % 1 transmit antenna
vhtCfg.NumSpaceTimeStreams = 1; % 1 space-time stream
vhtCfg.MCS = 1; % Modulation: QPSK Rate: 1/2

Waveform Generation Configuration

The wlanWaveformGenerator function can be configured to generate one or more packets and add
an idle time between each packet. In this example four packets with a 20 microsecond idle period will
be created.

numPackets = 4; % Generate 4 packets
idleTime = 20e-6; % 20 microseconds idle period after packet

The PSDU transmitted in each packet is scrambled using a random seed for each packet. This is
accomplished by specifying a vector of scrambler initialization seeds. The valid range of the seed is
between 1 and 127 inclusive.

% Initialize the scrambler with a random integer for each packet
scramblerInitialization = randi([1 127],numPackets,1);

Create a PSDU for Each Packet

For an IEEE 802.11ac data transmission the MAC frame is termed a MAC protocol data unit (MPDU),
the MAC header is termed the MPDU header, and the frame body is an aggregated MAC service data
unit (A-MSDU). One or more MPDUs are delimited, padded and aggregated to create an aggregated
MPDU (A-MPDU). The A-MPDU is delimited and padded to form the physical layer service data unit
(PSDU) which is coded and modulated to create the transmitted packet. This process of encapsulation
is shown in the following diagram:

In this example a PSDU is created containing a single MPDU for each packet. The MPDU consists of
an MPDU header, A-MSDU frame containing concatenated A-MSDU subframes with random data and
valid FCS. The wlanMACFrame function creates an A-MPDU with EOF delimiters and padding, i.e. the
PSDU, as specified in [1]. It also returns the length of the A-MPDU, termed as the APEP Length,
which is used to set the APEPLength property of the VHT configuration object. A PSDU is generated
for each packet and is concatenated into a vector data for transmission with the

 802.11ac Waveform Generation with MAC Frames

2-19

wlanWaveformGenerator function. The processing to create the concatenated PSDU bits data is
shown in the diagram below:

% Create frame configuration
macCfg = wlanMACFrameConfig('FrameType', 'QoS Data');
macCfg.FrameFormat = 'VHT'; % Frame format
macCfg.MSDUAggregation = true; % Form A-MSDUs internally
bitsPerByte = 8; % Number of bits in 1 byte
data = [];

for i=1:numPackets
 % Get MSDU lengths to create a random payload for forming an A-MPDU of
 % 4048 octets (pre-EOF padding)
 msduLengths = wlanMSDULengths(4048, macCfg, vhtCfg);
 msdu = cell(numel(msduLengths), 1);

 % Create MSDUs with the obtained lengths
 for j = 1:numel(msduLengths)
 msdu{j} = randi([0 255], 1, msduLengths(j));
 end

 % Generate PSDU bits containing A-MPDU with EOF delimiters and padding
 [psdu, apepLength] = wlanMACFrame(msdu, macCfg, vhtCfg, 'OutputFormat', 'bits');

 % Set the APEP length in the VHT configuration
 vhtCfg.APEPLength = apepLength;

 % Concatenate packet PSDUs for waveform generation
 data = [data; psdu]; %#ok<AGROW>
end

Generate a Baseband Waveform

The concatenated PSDU bits for all packets, data, are passed as an argument to the
wlanWaveformGenerator function along with the VHT packet configuration object vhtCfg. This
configures the waveform generator to synthesize an 802.11ac VHT waveform. To generate 802.11n™
HT or other format waveforms, use a different format configuration object, for example
wlanHTConfig or wlanNonHTConfig. The waveform generator is additionally configured using
name-value pairs to generate multiple packets with a specified idle time between packets, and initial
scrambler states.

% Generate baseband VHT packets
txWaveform = wlanWaveformGenerator(data,vhtCfg, ...
 'NumPackets',numPackets,'IdleTime',idleTime, ...
 'ScramblerInitialization',scramblerInitialization);

fs = wlanSampleRate(vhtCfg);
disp(['Baseband sampling rate: ' num2str(fs/1e6) ' Msps']);

2 MAC Modeling

2-20

Baseband sampling rate: 160 Msps

The magnitude of the baseband waveform is displayed below. Note the number of packets and idle
time configured.

figure;
plot(abs(txWaveform));
xlabel('Sample index');
ylabel('Magnitude');
title('Baseband IEEE 802.11ac Waveform');
legend('Transmit antenna 1');

The frequency spectrum of the generated time domain waveform, txWaveform, can be viewed using
the DSP System Toolbox™ dsp.SpectrumAnalyzer. As expected, the 160 MHz signal bandwidth is
clearly visible at baseband.

spectrumAnalyzer = dsp.SpectrumAnalyzer;
spectrumAnalyzer.SampleRate = fs;
spectrumAnalyzer.SpectrumType = 'Power density';
spectrumAnalyzer.RBWSource = 'Property';
spectrumAnalyzer.RBW = 100e3;
spectrumAnalyzer.AveragingMethod = 'Exponential';
spectrumAnalyze.ForgettingFactor = 0.99;
spectrumAnalyzer.YLabel = 'PSD';
spectrumAnalyzer.YLimits = [-80 -40];
spectrumAnalyzer.Title = 'Baseband IEEE 802.11ac Waveform';
spectrumAnalyzer(txWaveform);

 802.11ac Waveform Generation with MAC Frames

2-21

https://www.mathworks.com/products/dsp-system/

Generate an Over-the-Air Signal Using an RF Signal Generator

The baseband waveform created by WLAN Toolbox can now be downloaded to a signal generator to
perform receiver tests. Instrument Control Toolbox™ is used to generate an RF signal with a center
frequency of 5.25 GHz RF using the Keysight Technologies N5172B signal generator.

% Control whether to download the waveform to the waveform generator
playOverTheAir = false;

% Download the baseband IQ waveform to the instrument. Generate the RF
% signal at a center frequency of 5.25 GHz and output power of -10 dBm.
if playOverTheAir
 fc = 5.25e9; %#ok<UNRCH> % Center frequency
 power = -10; % Output power
 loopCount = Inf; % Number time to loop

 % Configure the signal generator, download the waveform and loop
 rf = rfsiggen();
 rf.Resource = 'TCPIP0::192.168.0.1::inst0::INSTR';
 rf.Driver = 'AgRfSigGen';
 connect(rf); % Connect to the instrument
 download(rf,txWaveform.',fs); % Download the waveform to the instrument
 start(rf,fc,power,loopCount); % Start transmitting waveform

 % When you have finished transmitting, stop the waveform output

2 MAC Modeling

2-22

https://www.mathworks.com/products/instrument/

 stop(rf);
 disconnect(rf);
end

Selected Bibliography

1 IEEE Std 802.11ac™-2013 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

 802.11ac Waveform Generation with MAC Frames

2-23

802.11 OFDM Beacon Frame Generation
This example shows how to generate packets containing MAC beacon frames suitable for baseband
simulation or over-the-air transmission using an SDR platform.

Introduction

This example creates an IEEE® 802.11™ beacon frame as described in section 9.3.3.3 of [1]. A WiFi
device can be used to view the beacon packet transmitted using SDR hardware as shown in the figure
below.

The beacon frame is a type of management frame, it identifies a basic service set (BSS) formed by a
number of 802.11 devices. The access point of a BSS periodically transmits the beacon frame to
establish and maintain the network. The beacon frame consists of a MAC header, a beacon frame
body and a valid frame check sequence (FCS). The beacon frame body contains the information fields
which allows stations to associate with the network. A WLAN beacon frame is created using the
wlanMACFrame function. The beacon frame is encoded and modulated using the
wlanWaveformGenerator function to create a baseband beacon packet. In this example the
generated waveform can be:

• Stored in a baseband file format. The file format can be used with the example “802.11 OFDM
Beacon Receiver with Captured Data” on page 4-41, which performs beacon packet decoding and
describes the receiver processing.

• Transmitted over-the-air. The beacon packet is upconverted for RF transmission using Xilinx®
Zynq-Based Radio SDR hardware. The radio hardware allows a waveform to be transmitted over-
the-air.

2 MAC Modeling

2-24

To transmit the beacon over-the-air, the Xilinx Zynq-based radio support package is required. This can
be installed using the Add-On Explorer. More information about SDR platforms can be found here.

Example Setup

The beacon packet can be written to a baseband file and transmitted using an SDR platform. To
transmit the beacon using the SDR platform set useSDR to true. To write to a baseband file set
saveToFile to true.

useSDR = false;
saveToFile = false;

Create IEEE 802.11 Beacon Frame

The beacon packets are periodically transmitted as specified by the Target Beacon Transmission Time
(TBTT) in the beacon interval field. The beacon interval represents the number of Time Units (TUs)
between TBTT, where 1 TU represents 1024 microseconds. A beacon interval of 100 TU results in a
102.4 milliseconds time interval between successive beacons. A beacon frame is generated using the
wlanMACFrame function. This function consumes the MAC frame configuration object
wlanMACFrameConfig. This object accepts wlanMACManagementConfig as a property to configure
the beacon frame-body.

SSID = 'TEST_BEACON'; % Network SSID
beaconInterval = 100; % In Time units (TU)
band = 5; % Band, 5 or 2.4 GHz
chNum = 52; % Channel number, corresponds to 5260MHz
bitsPerByte = 8; % Number of bits in 1 byte

% Create Beacon frame-body configuration object
frameBodyConfig = wlanMACManagementConfig;
frameBodyConfig.BeaconInterval = beaconInterval; % Beacon Interval in Time units (TUs)
frameBodyConfig.SSID = SSID; % SSID (Name of the network)
dsElementID = 3; % DS Parameter IE element ID
dsInformation = dec2hex(chNum, 2); % DS Parameter IE information
frameBodyConfig = frameBodyConfig.addIE(dsElementID, dsInformation); % Add DS Parameter IE to the configuration

% Create Beacon frame configuration object
beaconFrameConfig = wlanMACFrameConfig('FrameType', 'Beacon');
beaconFrameConfig.ManagementConfig = frameBodyConfig;

% Generate Beacon frame bits
[beacon, mpduLength] = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');

% Calculate center frequency for the given band and channel number
fc = helperWLANChannelFrequency(chNum, band);

Create IEEE 802.11 Beacon Packet

A beacon packet is synthesized using wlanWaveformGenerator with a non-HT format configuration
object. In this example an object is configured to generate a beacon packet of 20 MHz bandwidth, 1
transmit antenna and BPSK rate 1/2 (MCS 0).

cfgNonHT = wlanNonHTConfig; % Create a wlanNonHTConfig object
cfgNonHT.PSDULength = mpduLength; % Set the PSDU length in bytes

% The idle time is the length in seconds of an idle period after each
% generated packet. The idle time is set to the beacon interval.

 802.11 OFDM Beacon Frame Generation

2-25

matlab:supportPackageInstaller
https://www.mathworks.com/hardware-support.html?fq=product:CM

txWaveform = wlanWaveformGenerator(beacon, cfgNonHT, 'IdleTime', beaconInterval*1024e-6);
Rs = wlanSampleRate(cfgNonHT); % Get the input sampling rate

Save Waveform to File

This section saves the waveform in a baseband file using comm.BasebandFileWriter.

if saveToFile
 % The waveform is stored in a baseband file
 BBW = comm.BasebandFileWriter('nonHTBeaconPacket.bb', Rs, fc); %#ok<UNRCH>
 BBW(txWaveform);
 release(BBW);
end

For information about automatically detecting and synchronizing the waveform stored in the
baseband file format see “802.11 OFDM Beacon Receiver with Captured Data” on page 4-41.

Transmission with an SDR Device

This section demonstrates the transmission of the beacon packet over-the-air using an SDR device.

if useSDR
 % The SDR platform used must support |transmitRepeat|. Valid platforms
 % are 'AD936x', 'E3xx', and 'Pluto'.
 sdrPlatform = 'AD936x'; %#ok<UNRCH>
 tx = sdrtx(sdrPlatform);
 osf = 2; % OverSampling factor
 tx.BasebandSampleRate = Rs*osf;
 % The center frequency is set to the corresponding channel number
 tx.CenterFrequency = fc;
end

The transmitter gain tx.Gain parameter drives the power amplifier in the radio. This parameter is
used to impair the quality of the waveform, you can change this parameter to reduce transmission
quality, and impair the signal. These are suggested values, depending on your antenna configuration,
you may have to tweak these values. The suggested values are:

1 Set to 0 for increased gain (0dB)
2 Set to -10 for default gain (-10dB)
3 Set to -20 for reduced gain (-20dB)

The transmitRepeat function transfers the baseband waveform to the SDR platform, and stores the
signal samples in hardware memory. The example then repeatedly transmits this waveform over-the-
air until the release method of the transmit object is called. Messages are displayed in the command
window to confirm that transmission has started successfully.

if useSDR
 % Set transmit gain
 tx.Gain = 0; %#ok<UNRCH>
 % Resample transmit waveform
 txWaveform = resample(txWaveform, osf, 1);
 % Transmit over-the-air
 transmitRepeat(tx, txWaveform);
end

2 MAC Modeling

2-26

Conclusion and Further Exploration

This example has demonstrated how to generate a beacon packet for the IEEE 802.11 standard. A Wi-
Fi™ device can be used to view the beacon packet transmitted using SDR hardware. Alternatively, the
stored baseband beacon packet can be processed to recover the transmitted information using the
example “802.11 OFDM Beacon Receiver with Captured Data” on page 4-41.

Appendix

This example uses the following helper function:

• helperWLANChannelFrequency.m

Selected Bibliography

1 IEEE Std 802.11™-2016 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

 802.11 OFDM Beacon Frame Generation

2-27

Signal Transmission

3

802.11be 4096-QAM 320 MHz Waveform Generation and
Analysis

This example shows how to generate an IEEE® 802.11be™ single-user waveform with 4096-point
quadrature amplitude modulation (4096-QAM) and a channel bandwidth of 320 MHz. The example
demonstrates how to measure transmitter modulation accuracy, spectral mask, and spectral flatness.

Introduction

This example shows how to parameterize and generate an IEEE 802.11be extremely high throughput
(EHT) single-user waveform specified in P802.11be Draft 0.1 [1] on page 3-0 . This example
performs transmitter modulation accuracy, required spectral mask, and required spectral flatness
measurements on the waveform for the configuration specified in Section 36.3.18 of [1 on page 3-
0].

The example generates 20 single-user EHT packets with a 320 MHz channel bandwidth and a 10
microsecond gaps between packets. Each packet contains random data and uses 4096-QAM. The
example oversamples the waveform using a larger IFFT than required for the nominal baseband rate
and does not perform spectral filtering. The example uses a high-power amplifier (HPA) model, which
introduces in-band distortion and spectral regrowth. The example performs spectral emission mask
measurement on the upsampled waveform after the high-power amplifier modeling. The example
decodes the EHT data field and measures the error vector magnitude (EVM) to determine the
modulation accuracy after downsampling the waveform to baseband sampling rate. Additionally, the
example measures the spectral flatness of the recovered waveform. This diagram shows the workflow
contained in the example.

Simulation Setup

Configure the example to generate 20 single-user EHT packets with a 10 microsecond idle period
between each packet.

3 Signal Transmission

3-2

numPackets = ;

idleTime = ; % In microseconds

802.11be Waveform Configuration and Generation

The physical layer of 802.11be, defined in P802.11be Draft 0.1 [1] on page 3-0 , builds upon
802.11ax [2 on page 3-0] with these added capabilities and modifications.

1 Increased maximum channel bandwidth of 320 MHz
2 4096-QAM in MCS index options 12 and 13
3 Assignment of multiple resource unit (MRU) to a single station (STA), with optional puncturing of

single-user packets
4 Increased maximum number of spatial streams for uplink MU-MIMO (16 spatial streams across

up to 8 users)
5 Modified tone plan for 80 and 160 MHz bandwidths
6 Larger generator polynomial for Data field scrambler and descrambler

This example models these key 802.11be features.

1 320 MHz channel bandwidth
2 4096-QAM modulation
3 Modified tone plan for 80 and 160 MHz bandwidths
4 Larger generator polynomial for Data field scrambler and descrambler

The draft standard defines the EHT multi-user (EHT MU) format for the transmission of both single-
user and multi-user packets. This example only supports generation of single-user packets. Use the
EHT MU configuration object, ehtMUConfig, to configure transmission properties of an EHT MU
packet. This example uses random bits to generate the U-SIG and EHT-SIG signaling fields. You can
specify the random seed or field bit values by modifying the relevant properties of the ehtMUConfig
object. The value of the U-SIG and EHT-SIG bits affects the peak-to-average-power ratio (PAPR) of the
packet. Because this example does not use space-time block coding, it can measure the modulation
accuracy per spatial stream.

chanBW = ; % Channel bandwidth

mcs = ; % Modulation and coding scheme

numTx = ; % Number of transmit antennas

apepLength = ; % A-MPDU length pre-EOF padding in bytes

savedState = rng(0); % Set random state

cfgEHT = ehtMUConfig(chanBW); % EHT MU configuration object
cfgEHT.NumTransmitAntennas = numTx;
cfgEHT.User{1}.MCS = mcs;
cfgEHT.User{1}.NumSpaceTimeStreams = numTx;
cfgEHT.User{1}.APEPLength = apepLength;
cfgEHT.RU{1}.SpatialMapping = 'Direct';

To model the effect of a high-power amplifier on the waveform and view the out-of-band spectral
emissions, the waveform must be oversampled. This example generates the waveform using a larger

 802.11be 4096-QAM 320 MHz Waveform Generation and Analysis

3-3

IFFT than required for the nominal baseband rate, resulting in an oversampled waveform. The
example does not perform spectral filtering.

osf = ; % Oversampling factor

Create random bits for all packets.

psduLength = cfgEHT.getPSDULength*8; % PSDU length in bits per packet
data = randi([0 1],psduLength*numPackets,1);

Generate the EHT MU waveform for the specified bits and configuration by using the
ehtWaveformGenerator function, specifying the desired oversampling factor, number of packets,
and idle time between each packet.

txWaveform = ehtWaveformGenerator(data,cfgEHT,'NumPackets',numPackets,'IdleTime',idleTime*1e-6,'OversamplingFactor',osf);

Get the baseband sampling rate of the waveform

fs = ehtSampleRate(cfgEHT);
disp(['Baseband sampling rate: ' num2str(fs/1e6) ' Msps']);

Baseband sampling rate: 320 Msps

Prepend zeros to the waveform to allow for early timing synchronization.

txWaveform = [zeros(round(idleTime*1e-6*fs),numTx); txWaveform];

Add Impairments

High-Power Amplifier Modeling

The high-power amplifier introduces nonlinear behavior in the form of in-band distortion and spectral
regrowth. This example simulates the power amplifiers by using the Rapp model [3 on page 3-0],
which introduces AM/AM distortion.

Model the amplifier by using the dsp.FIRInterpolator object, and configure reduced distortion by
specifying a back-off, hpaBackoff, such that the amplifier operates below its saturation point. You
can increase the backoff to reduce EVM for higher MCS values.

pSaturation = 25; % Saturation power of a power amplifier in dBm
hpaBackoff = 16; % Power amplifier backoff in dB
nonLinearity = comm.MemorylessNonlinearity;
nonLinearity.Method = 'Rapp model';
nonLinearity.Smoothness = 3; % p parameter
nonLinearity.LinearGain = -hpaBackoff;
nonLinearity.OutputSaturationLevel = db2mag(pSaturation-30);

Add the model to each transmit antenna.

for i=1:cfgEHT.NumTransmitAntennas
 txWaveform(:,i) = nonLinearity(txWaveform(:,i));
end

Thermal Noise

Add thermal noise to the waveform, specifying a 6 dB receiver noise figure [4 on page 3-0].

NF = 6; % Noise figure (dB)
BW = fs*osf; % Bandwidth (Hz)

3 Signal Transmission

3-4

k = 1.3806e-23; % Boltzman constant (J/K)
T = 290; % Ambient temperature (K)
noisePower = 10*log10(k*T*BW)+NF;

awgnChannel = comm.AWGNChannel('NoiseMethod','Variance','Variance',10^(noisePower/10));
txWaveform = awgnChannel(txWaveform);

Modulation Accuracy (EVM) and Spectral Flatness Measurements

Downsampling and Filtering

Resample the oversampled waveform down to baseband for physical layer processing and EVM and
spectral flatness measurements, applying a low-pass anti-aliasing filter before downsampling. The
impact of the low-pass filter is visible in the spectral flatness measurement. The anti-aliasing filter is
designed so that all active subcarriers are within the filter passband.

Design resampling filter.

aStop = 40; % Stopband attenuation
ofdmInfo = ehtOFDMInfo('EHT-Data',cfgEHT); % OFDM parameters
SCS = fs/ofdmInfo.FFTLength; % Subcarrier spacing
txbw = max(abs(ofdmInfo.ActiveFrequencyIndices))*2*SCS; % Occupied bandwidth
[L,M] = rat(osf);
maxLM = max([L M]);
R = (fs-txbw)/fs;
TW = 2*R/maxLM; % Transition width
b = designMultirateFIR(L,M,TW,aStop);

Resample the waveform to baseband.

firinterp = dsp.FIRRateConverter(M,L,b);
rxWaveform = firinterp(txWaveform);

Receiver Processing

This section detects, synchronizes, and extracts each packet in rxWaveform, then measures the EVM
and spectral flatness. For each packet, the example performs these steps.

• Detect the start of the packet
• Extract the legacy fields
• Estimate and correct coarse carrier frequency offset (CFO)
• Perform fine symbol timing estimate by using the frequency-corrected legacy fields
• Extract the packet from the waveform by using the fine symbol timing offset
• Correct the extracted packet with the coarse CFO estimate
• Extract the L-LTF, then estimate and correct the fine CFO
• Extract the EHT-LTF and perform channel estimation for each of the transmit streams
• Measure the spectral flatness by using the channel estimate
• Extract and OFDM demodulate the EHT Data field
• Perform noise estimation by using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers
• Phase-correct and equalize the EHT Data field by using the channel and noise estimates
• For each data-carrying subcarrier in each spatial stream, find the closest constellation point and

measure the EVM

 802.11be 4096-QAM 320 MHz Waveform Generation and Analysis

3-5

• Recover the PSDU by decoding the equalized symbols

This diagram shows the processing chain.

This example makes two different EVM measurements.

1 RMS EVM per packet, which comprises averaging the EVM over subcarriers, OFDM symbols,
and spatial streams.

2 RMS EVM per subcarrier per spatial stream for a packet. Because this configuration maps spatial
streams directly to antennas, this measurement can help detect frequency-dependent
impairments, which may affect individual RF chains differently. This measurement averages the
EVM over OFDM symbols only.

Setup EVM measurements.

[EVMPerPkt,EVMPerSC] = evmSetup(cfgEHT);

Get indices for accessing each field within the time-domain packet.

ind = ehtFieldIndices(cfgEHT);

Define the minimum detectable length of data, in samples.

minPktLen = double(ind.LSTF(2)-ind.LSTF(1))+1;

Detect and process packets within the received waveform by using a while loop, which performs
these steps.

1 Detect a packet by indexing into rxWaveform with the sample offset, searchOffset
2 Detect and process the first packet within rxWaveform
3 Detect and process the next packet by incrementing the sample index offset
4 Repeat until no further packets are detected

rxWaveformLength = size(rxWaveform,1);
pktLength = double(ind.EHTData(2));
rmsEVM = zeros(numPackets,1);
pktOffsetStore = zeros(numPackets,1);

3 Signal Transmission

3-6

rng(savedState); % Restore random state
pktNum = 0;
searchOffset = 0; % Start at first sample (no offset)
while (searchOffset+minPktLen)<=rxWaveformLength

 % Detect packet and determine coarse packet offset
 pktOffset = ehtPacketDetect(rxWaveform,cfgEHT.ChannelBandwidth,searchOffset);
 % Packet offset from start of the waveform
 pktOffset = searchOffset+pktOffset;
 % Skip packet if L-STF is empty
 if isempty(pktOffset) || (pktOffset<0) || ...
 ((pktOffset+ind.LSIG(2))>rxWaveformLength)
 break;
 end

 % Extract L-STF and perform coarse frequency offset correction
 nonht = rxWaveform(pktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 coarsefreqOff = ehtCoarseCFOEstimate(nonht,cfgEHT.ChannelBandwidth);
 nonht = helperFrequencyOffset(nonht,fs,-coarsefreqOff);

 % Extract the legacy fields and determine fine packet offset
 lltfOffset = ehtSymbolTimingEstimate(nonht,cfgEHT.ChannelBandwidth);
 pktOffset = pktOffset+lltfOffset; % Determine packet offset

 % If offset is outwith bounds of the waveform, then skip samples and
 % continue searching within remainder of the waveform
 if (pktOffset<0) || ((pktOffset+pktLength)>rxWaveformLength)
 searchOffset = pktOffset+double(ind.LSTF(2))+1;
 continue;
 end

 % Timing synchronization complete; extract the detected packet
 rxPacket = rxWaveform(pktOffset+(1:pktLength),:);
 pktNum = pktNum+1;
 disp([' Packet ' num2str(pktNum) ' at index: ' num2str(pktOffset+1)]);

 % Apply coarse frequency correction to the extracted packet
 rxPacket = helperFrequencyOffset(rxPacket,fs,-coarsefreqOff);

 % Perform fine frequency offset correction on the extracted packet
 lltf = rxPacket(ind.LLTF(1):ind.LLTF(2),:); % Extract L-LTF
 fineFreqOff = ehtFineCFOEstimate(lltf,cfgEHT.ChannelBandwidth);
 rxPacket = helperFrequencyOffset(rxPacket,fs,-fineFreqOff);

 % Extract EHT-LTF samples, demodulate, and perform channel estimation
 ehtLTF = rxPacket(ind.EHTLTF(1):ind.EHTLTF(2),:);
 ehtLTFDemod = ehtDemodulate(ehtLTF,'EHT-LTF',cfgEHT);

 % Channel estimate
 [chanEst,pilotEst] = ehtLTFChannelEstimate(ehtLTFDemod,cfgEHT);

 % Spectral flatness measurement
 ehtTxSpectralFlatnessMeasurement(chanEst,cfgEHT,pktNum);

 % Data demodulate
 rxData = rxPacket(ind.EHTData(1):ind.EHTData(2),:);
 demodSym = ehtDemodulate(rxData,'EHT-Data',cfgEHT);

 802.11be 4096-QAM 320 MHz Waveform Generation and Analysis

3-7

 % Pilot phase tracking
 demodSym = ehtCommonPhaseErrorTracking(demodSym,chanEst,cfgEHT);

 % Estimate noise power in EHT fields
 nVarEst = ehtNoiseEstimate(demodSym(ofdmInfo.PilotIndices,:,:),pilotEst,cfgEHT);

 % Extract data subcarriers from demodulated symbols and channel
 % estimate
 demodDataSym = demodSym(ofdmInfo.DataIndices,:,:);
 chanEstData = chanEst(ofdmInfo.DataIndices,:,:);

 % Equalization and STBC combining
 [eqSym,csi] = ehtEqualizeCombine(demodDataSym,chanEstData,nVarEst,cfgEHT);

 % Compute RMS EVM over all spatial streams for a packet
 rmsEVM(pktNum) = EVMPerPkt(eqSym);
 fprintf(' RMS EVM: %2.2f%%, %2.2fdB\n',rmsEVM(pktNum),20*log10(rmsEVM(pktNum)/100));

 % Compute RMS EVM per subcarrier and spatial stream for the packet
 evmPerSC = EVMPerSC(eqSym); % Nst-by-1-by-Nss

 % Plot RMS EVM per subcarrier and equalized constellation
 ehtTxEVMConstellationPlots(eqSym,evmPerSC,cfgEHT,pktNum);

 % Recover data field bits
 rxPSDU = ehtDataBitRecover(eqSym,nVarEst,csi,cfgEHT);

 if isequal(rxPSDU,data((1:psduLength)+(pktNum-1)*psduLength))
 fprintf(' Decode success\n');
 else
 fprintf(' Decode failure\n');
 end

 % Store the offset of each packet within the waveform
 pktOffsetStore(pktNum) = pktOffset;

 % Increment waveform offset and search remaining waveform for a packet
 searchOffset = pktOffset+pktLength+minPktLen;
end

 Packet 1 at index: 992

 Spectral flatness passed

 RMS EVM: 0.41%, -47.69dB

 Decode success

 Packet 2 at index: 32352

 Spectral flatness passed

 RMS EVM: 0.43%, -47.33dB

 Decode success

 Packet 3 at index: 63712

 Spectral flatness passed

3 Signal Transmission

3-8

 RMS EVM: 0.43%, -47.26dB

 Decode success

 Packet 4 at index: 95072

 Spectral flatness passed

 RMS EVM: 0.47%, -46.62dB

 Decode success

 Packet 5 at index: 126432

 Spectral flatness passed

 RMS EVM: 0.46%, -46.79dB

 Decode success

 Packet 6 at index: 157792

 Spectral flatness passed

 RMS EVM: 0.45%, -46.91dB

 Decode success

 Packet 7 at index: 189152

 Spectral flatness passed

 RMS EVM: 0.43%, -47.27dB

 Decode success

 Packet 8 at index: 220512

 Spectral flatness passed

 RMS EVM: 0.37%, -48.68dB

 Decode success

 Packet 9 at index: 251872

 Spectral flatness passed

 RMS EVM: 0.48%, -46.45dB

 Decode success

 Packet 10 at index: 283232

 Spectral flatness passed

 RMS EVM: 0.42%, -47.49dB

 Decode success

 Packet 11 at index: 314592

 Spectral flatness passed

 802.11be 4096-QAM 320 MHz Waveform Generation and Analysis

3-9

 RMS EVM: 0.37%, -48.69dB

 Decode success

 Packet 12 at index: 345952

 Spectral flatness passed

 RMS EVM: 0.42%, -47.53dB

 Decode success

 Packet 13 at index: 377312

 Spectral flatness passed

 RMS EVM: 0.43%, -47.27dB

 Decode success

 Packet 14 at index: 408672

 Spectral flatness passed

 RMS EVM: 0.45%, -46.90dB

 Decode success

 Packet 15 at index: 440032

 Spectral flatness passed

 RMS EVM: 0.47%, -46.58dB

 Decode success

 Packet 16 at index: 471392

 Spectral flatness passed

 RMS EVM: 0.45%, -46.99dB

 Decode success

 Packet 17 at index: 502752

 Spectral flatness passed

 RMS EVM: 0.41%, -47.84dB

 Decode success

 Packet 18 at index: 534112

 Spectral flatness passed

 RMS EVM: 0.41%, -47.69dB

 Decode success

 Packet 19 at index: 565472

 Spectral flatness passed

3 Signal Transmission

3-10

 RMS EVM: 0.54%, -45.29dB

 Decode success

 Packet 20 at index: 596832

 Spectral flatness passed

 RMS EVM: 0.41%, -47.66dB

 802.11be 4096-QAM 320 MHz Waveform Generation and Analysis

3-11

3 Signal Transmission

3-12

 Decode success

if pktNum>0
 fprintf('Average EVM for %d packets: %2.2f%%, %2.2fdB\n', ...
 pktNum,mean(rmsEVM(1:pktNum)),20*log10(mean(rmsEVM(1:pktNum))/100));
else
 disp('No complete packet detected');
end

Average EVM for 20 packets: 0.44%, -47.21dB

Spectral Mask Measurement

This section measures the spectral mask of the filtered and impaired waveform after high-power
amplifier modeling. The transmitter spectral mask test [5 on page 3-0] uses a time-gated spectral
measurement of the EHT Data field. The example extracts the EHT Data field of each packet from the
oversampled waveform by using the start indices of each packet within the baseband waveform. Any
delay introduced in the baseband processing chain used to determine the packet indices must be
accounted for when gating the EHT data field within txWaveform. Concatenate the extracted EHT
Data fields in preparation for measurement.

startIdx = osf*(ind.EHTData(1)-1)+1; % Upsampled start of EHT Data
endIdx = osf*ind.EHTData(2); % Upsampled end of EHT Data
delay = grpdelay(firinterp,1); % Group delay of downsampling filter
idx = zeros(endIdx-startIdx+1,pktNum);
for i = 1:pktNum

 802.11be 4096-QAM 320 MHz Waveform Generation and Analysis

3-13

 % Start of packet in txWaveform
 pktOffset = round(osf*pktOffsetStore(i))-delay;
 % Indices of EHT-Data in txWaveform
 idx(:,i) = (pktOffset+(startIdx:endIdx));
end
gatedEHTTData = txWaveform(idx(:),:);

The 802.11be standard specifies the spectral mask relative to the peak power spectral density. This
generated plot overlays the required mask with the measured PSD.

if pktNum>0
 ehtSpectralMaskTest(gatedEHTTData,fs,osf);
end

 Spectral mask passed

Conclusion and Further Exploration

This example measures and plots:

• Spectral flatness
• RMS EVM per subcarrier
• Equalized constellation

3 Signal Transmission

3-14

• Spectral mask

The high-power amplifier model introduces significant in-band distortion and spectral regrowth,
which is visible in the EVM results, noisy constellation, and out-of-band emissions in the spectral
mask plot. Try increasing the high-power amplifier backoff and observe the improved EVM,
constellation, and lower out-of-band emissions. The downsampling (to bring the waveform to
baseband for processing) stage includes filtering. The filter response affects the spectral flatness
measurement. The ripple in the spectral flatness measurement is due to downsampling to baseband.
Try using a different filter or changing the stop-band attenuation and observe the impact on the
spectral flatness.

References

1 IEEE P802.11be™/D0.1 Draft Standard for Information technology — Telecommunications and
information exchange between systems Local and metropolitan area networks — Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 8: Enhancements for extremely high throughput (EHT).

2 IEEE P802.11ax™/D7.0 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High Efficiency WLAN.

3 Loc and Cheong. IEEE P802.11 Wireless LANs. TGac Functional Requirements and Evaluation
Methodology Rev. 16. 2011-01-19.

4 Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd Edition.
United Kingdom: Cambridge University Press, 2013. Archambault, Jerry, and Shravan Surineni.
"IEEE 802.11 spectral measurements using vector signal analyzers." RF Design 27.6 (2004):
38-49.

5 Archambault, Jerry, and Shravan Surineni. "IEEE 802.11 spectral measurements using vector
signal analyzers." RF Design 27.6 (2004): 38-49.

 802.11be 4096-QAM 320 MHz Waveform Generation and Analysis

3-15

802.11ad Waveform Generation with Beamforming
This example shows how to beamform an IEEE® 802.11ad™ DMG waveform with a phased array
using WLAN Toolbox™ and Phased Array System Toolbox™.

Introduction

IEEE 802.11ad [1] defines the directional multi-gigabit (DMG) transmission format operating at 60
GHz. To overcome the large path loss experienced at 60 GHz, the IEEE 802.11ad standard is
designed to support directional beamforming. By using phased antenna arrays you can apply an
antenna weight vector (AWV) to focus the antenna pattern in the desired direction. Each packet is
transmitted on all array elements, but the AWV applies a phase shift to each element to steer the
transmission. The quality of a communication link can be improved by appending optional training
fields to DMG packets, and testing different AWVs at the transmitter or receiver. This process is
called beam refinement.

A DMG packet consists of the following fields:

1 STF - The short training field, which is used for synchronization.
2 CE - Channel estimation field, which is used for channel estimation.
3 Header - The signaling field, which the receiver decodes to determine transmission parameters.
4 Data - The data field, which carries the user data payload.
5 AGC Subfields - Optional automatic gain control (AGC) subfields, used for beam refinement.
6 Training Subfields - Optional training subfields, used for beam refinement.

The STF and CE fields form the preamble. The preamble, header, and data fields of a DMG packet are
transmitted with the same AWV. For transmitter beam refinement training, up to 64 training (TRN)
subfields can be appended to the packet. Each TRN subfield is transmitted using a different AWV. This
allows the performance of up to 64 different AWVs to be measured, and the AWV for the preamble,
header, and data fields to be refined for subsequent transmissions. CE subfields are periodically
transmitted, one for every four TRN subfields, amongst the TRN subfields. Each CE subfield is
transmitted using the same AWV as the preamble. To allow the receiver to reconfigure AGC before
receiving the TRN subfields, the TRN subfields are preceded by AGC subfields. For each TRN
subfield, an AGC subfield is transmitted using the same AWV applied to the individual TRN subfield.
This allows a gain to be set at the receiver, suitable to measuring all TRN subfields. The diagram
below shows the packet structure with four AGC and TRN subfields numbered and highlighted.
Therefore, four AWVs are tested as part of beam refinement. The same AWVs are applied to AGC and
TRN subfields with the same number.

This example simulates transmitter training by applying different AWVs to each of the training
subfields to steer the transmission in multiple directions. The strength of each training subfield is

3 Signal Transmission

3-16

evaluated at a receiver by evaluating the far-field plane wave to determine which transmission AWV
is optimal. This simulation does not include a channel or path loss.

This example requires WLAN Toolbox and Phased Array System Toolbox.

Waveform Specification

The waveform is configured for a DMG packet transmission with the orthogonal frequency-division
multiplexing (OFDM) physical layer, a 100-byte physical layer service data unit (PSDU), and four
transmitter training subfields. The four training subfields allow four AWVs to be tested for beam
refinement. Using the function wlanDMGConfig, create a DMG configuration object. A DMG
configuration object specifies transmission parameters.

dmg = wlanDMGConfig;
dmg.MCS = 13; % OFDM
dmg.TrainingLength = 4; % Use 4 training subfields
dmg.PacketType = 'TRN-T'; % Transmitter training
dmg.PSDULength = 100; % Bytes

Beamforming Specification

The transmitter antenna pattern is configured as a 16-element uniform linear array with half-
wavelength spacing. Using the objects phased.ULA (Phased Array System Toolbox) and
phased.SteeringVector (Phased Array System Toolbox), create the phased array and the AWVs.
The location of the receiver for evaluating the transmission is specified as an offset from the
boresight of the transmitter.

receiverAz = 6; % Degrees off the transmitter's boresight

A uniform linear phased array with 16 elements is created to steer the transmission.

N = 16; % Number of elements
c = physconst('LightSpeed'); % Propagation speed (m/s)
fc = 60.48e9; % Center frequency (Hz)
lambda = c/fc; % Wavelength (m)
d = lambda/2; % Antenna element spacing (m)
TxArray = phased.ULA('NumElements',N,'ElementSpacing',d);

The AWVs are created using a phased.SteeringVector (Phased Array System Toolbox) object.
Five steering angles are specified to create five AWVs, one for the preamble and data fields, and one
for each of the four the training subfields. The preamble and data fields are transmitted at boresight.
The four training subfields are transmitted at angles around boresight.

% Create a directional steering vector object
SteeringVector = phased.SteeringVector('SensorArray',TxArray);

% The directional angle for the preamble and data is 0 degrees azimuth, no
% elevation, therefore at boresight. [Azimuth; Elevation]
preambleDataAngle = [0; 0];

% Each of the four training fields uses a different set of weights to steer
% to a slightly different direction. [Azimuth; Elevation]
trnAngle = [[-10; 0] [-5; 0] [5; 0] [10; 0]];

% Generate the weights for all of the angles
weights = SteeringVector(fc,[preambleDataAngle trnAngle]);

 802.11ad Waveform Generation with Beamforming

3-17

https://www.mathworks.com/products/wlan-system/
https://www.mathworks.com/products/phased-array/

% Each row of the AWV is a weight to apply to a different antenna element
preambleDataAWV = conj(weights(:,1)); % AWV used for preamble, data and CE fields
trnAWV = conj(weights(:,2:end)); % AWV used for each TRN subfield

Using the plotArrayResponse helper function, the array response shows the direction of the receiver
is most aligned with the direction of training subfield TRN-SF3.

plotArrayResponse(TxArray,receiverAz,fc,weights);

Generate Baseband Waveform

Use the configured DMG object and a PSDU filled with random data as inputs to the waveform
generator, wlanWaveformGenerator. The waveform generator modulates PSDU bits according to a
format configuration and also performs OFDM windowing.

% Create a PSDU of random bits
s = rng(0); % Set random seed for repeatable results
psdu = randi([0 1],dmg.PSDULength*8,1);

% Generate packet
tx = wlanWaveformGenerator(psdu,dmg);

Apply Weight Vectors to Each Field

A phased.Radiator (Phased Array System Toolbox) object is created to apply the AWVs to the
waveform, combine the radiated signal from each element to form a plane wave, and determine the
plane wave at the angle of interest, receiverAz. Each portion of the DMG waveform tx is passed
through the Radiator with a specified set of AWVs, and the angle at which to evaluate the plane wave.

3 Signal Transmission

3-18

Radiator = phased.Radiator;
Radiator.Sensor = TxArray; % Use the uniform linear array
Radiator.WeightsInputPort = true; % Provide AWV as argument
Radiator.OperatingFrequency = fc; % Frequency in Hertz
Radiator.CombineRadiatedSignals = true; % Create plane wave

% The plane wave is evaluated at a direction relative to the radiator
steerAngle = [receiverAz; 0]; % [Azimuth; Elevation]

% The beamformed waveform is evaluated as a plane wave at the receiver
planeWave = zeros(size(tx));

% Get indices for fields
ind = wlanFieldIndices(dmg);

% Get the plane wave while applying the AWV to the preamble, header, and data
idx = (1:ind.DMGData(2));
planeWave(idx) = Radiator(tx(idx),steerAngle,preambleDataAWV);

% Get the plane wave while applying the AWV to the AGC and TRN subfields
for i = 1:dmg.TrainingLength
 % AGC subfields
 agcsfIdx = ind.DMGAGCSubfields(i,1):ind.DMGAGCSubfields(i,2);
 planeWave(agcsfIdx) = Radiator(tx(agcsfIdx),steerAngle,trnAWV(:,i));
 % TRN subfields
 trnsfIdx = ind.DMGTRNSubfields(i,1):ind.DMGTRNSubfields(i,2);
 planeWave(trnsfIdx) = Radiator(tx(trnsfIdx),steerAngle,trnAWV(:,i));
end

% Get the plane wave while applying the AWV to the TRN-CE
for i = 1:dmg.TrainingLength/4
 trnceIdx = ind.DMGTRNCE(i,1):ind.DMGTRNCE(i,2);
 planeWave(trnceIdx) = Radiator(tx(trnceIdx),steerAngle,preambleDataAWV);
end

Evaluate the Beamformed Waveform

The helper function plotDMGWaveform plots the magnitude of the beamformed plane wave. When
evaluating the magnitude of the beamformed plane wave we can see that the fields beamformed in
the direction of the receiver are stronger than other fields.

plotDMGWaveform(planeWave,dmg,'Beamformed Plane Wave with Fields Highlighted');

rng(s); % Restore random state

 802.11ad Waveform Generation with Beamforming

3-19

Conclusion

This example showed how to generate an IEEE 802.11ad DMG waveform and apply AWVs to different
portions of the waveform. WLAN Toolbox was used to generate a standard compliant waveform, and
Phased Array System Toolbox was used to apply the AWVs and evaluate the magnitude of the
resultant plane wave in the direction of a receiver.

Appendix

This example uses the following helper functions:

• plotArrayResponse.m
• plotDMGWaveform.m

Selected Bibliography

1 IEEE Std 802.11ad™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

3 Signal Transmission

3-20

https://www.mathworks.com/products/wlan-system/
https://www.mathworks.com/products/phased-array/

802.11ac Transmit Beamforming
This example shows how to improve the performance of an IEEE® 802.11ac™ link by beamforming
the transmission when channel state information is available at the transmitter.

Introduction

Transmit beamforming focuses energy towards a receiver to improve the SNR of a link. In this
scheme the transmitter is called a beamformer and the receiver is called a beamformee. A steering
matrix is used by the beamformer to direct the energy to the beamformee. The steering matrix is
calculated using channel state information obtained through channel measurements. In IEEE
802.11ac [1] these measurements are obtained by sounding the channel between beamformer and
beamformee. To sound the channel the beamformer sends an NDP (Null Data Packet) to the
beamformee. The beamformee uses the channel information provided by sounding to calculate a
feedback matrix. This matrix is fed back to the beamformer in a compressed format. The beamformer
can then use the feedback matrix to create a steering matrix and beamform transmissions to the
beamformee. The process of forming the steering matrix is shown in this diagram.

In IEEE 802.11ac the single user beamformee capability is not mandatory. Therefore a multi-antenna
transmitter may have to use a different scheme to transmit packets to a receiver which cannot act as
a beamformee. One such scheme is spatial expansion. Spatial expansion allows a number of space-
time streams to be transmitted on a greater number of transmit antennas. Using spatial expansion
can provide a small transmit diversity gain in channels with flat fading when compared to directly
mapping space-time streams to transmit antennas [2].

In this example a 4x2 MIMO configuration is considered between a transmitter and receiver, with two
space-time streams used for a data packet transmission. First the scenario of a receiver which is not
capable of being a beamformee is considered. A transmission is made using spatial expansion and the
data symbols are recovered and the signal quality measured. To show the benefits of transmit
beamforming the data packet is then transmitted over the same channel realization, but this time
using transmit beamforming. The performance of the two schemes are then compared. These stages
are shown in the diagram below.

 802.11ac Transmit Beamforming

3-21

Waveform Configuration

A 4x2 MIMO configuration is used in this example with 2 space-time streams.

NumTxAnts = 4; % Number of transmit antennas
NumSTS = 2; % Number of space-time streams
NumRxAnts = 2; % Number of receive antennas

The format specific configuration of a VHT waveform is described using a VHT format configuration
object. In this example the waveform is configured with a 20 MHz bandwidth and the MIMO
configuration specified above.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW20';
cfgVHT.APEPLength = 4000;
cfgVHT.NumTransmitAntennas = NumTxAnts;
cfgVHT.NumSpaceTimeStreams = NumSTS;
cfgVHT.MCS = 4; % 16-QAM, rate 3/4

Channel Configuration

In this example a TGac channel model is used with delay profile Model-B. The channel realization is
controlled with a seed to allow repeatability.

tgacChannel = wlanTGacChannel;
tgacChannel.DelayProfile = 'Model-B';
tgacChannel.ChannelBandwidth = cfgVHT.ChannelBandwidth;
tgacChannel.SampleRate = wlanSampleRate(cfgVHT);
tgacChannel.NumReceiveAntennas = NumRxAnts;
tgacChannel.NumTransmitAntennas = NumTxAnts;

3 Signal Transmission

3-22

tgacChannel.TransmitReceiveDistance = 100; % Meters
tgacChannel.RandomStream = 'mt19937ar with seed';
tgacChannel.Seed = 70; % Seed to allow repeatability

Noise is added to the time domain waveform at the output of the channel with a power, noisePower.

noisePower = -37; % dBW

Setup other objects and variables for simulation.

% Indices for extracting fields
ind = wlanFieldIndices(cfgVHT);

% AWGN channel to add noise with a specified noise power. The random
% process controlling noise generation is seeded to allow repeatability.
awgnChannel = comm.AWGNChannel;
awgnChannel.RandomStream = 'mt19937ar with seed';
awgnChannel.Seed = 5;
awgnChannel.NoiseMethod = 'Variance';
awgnChannel.Variance = 10^(noisePower/10);

% Calculate the expected noise variance after OFDM demodulation
noiseVar = vhtBeamformingNoiseVariance(noisePower,cfgVHT);

% Number of spatial streams
Nss = NumSTS/(cfgVHT.STBC+1);

% Get the number of occupied subcarriers in VHT fields
ofdmInfo = wlanVHTOFDMInfo('VHT-Data',cfgVHT);
Nst = ofdmInfo.NumTones;

% Generate a random PSDU which will be transmitted
rng(0); % Set random state for repeatability
psdu = randi([0 1],cfgVHT.PSDULength*8,1);

Transmission with Spatial Expansion

First a transmission is made using spatial expansion. This type of transmission may be made by a
multi-antenna transmitter to a receiver which is not capable of being a beamformee. The
SpatialMapping property of the format configuration object allows different spatial mapping
schemes to be selected. In this example the example spatial expansion matrix provided in Section
2.3.11.1.1.2 of [3] is used. Therefore a 'Custom' spatial mapping is configured. The custom spatial
mapping matrix is used by assigning the SpatialMappingMatrix of the format configuration
object. This matrix describes the mapping of each subcarrier for each space-time stream to all
transmit antennas. Therefore the size of the spatial mapping matrix used is Nst-by-Nsts-by-Nt.
Nst is the number of occupied subcarriers, Nsts is the number of space-time streams, and Nt is the
number of transmit antennas. The spatial mapping matrix duplicates some of the space-time streams
to form the desired number of transmit streams.

% Configure a spatial expansion transmission
vhtSE = cfgVHT;
vhtSE.SpatialMapping = 'Custom'; % Use custom spatial expansion matrix
vhtSE.SpatialMappingMatrix = helperSpatialExpansionMatrix(vhtSE);

% Generate waveform
tx = wlanWaveformGenerator(psdu,vhtSE);

 802.11ac Transmit Beamforming

3-23

% Pass waveform through a fading channel and add noise. Trailing zeros
% are added to allow for channel filter delay.
rx = tgacChannel([tx; zeros(15,NumTxAnts)]);
% Allow same channel realization to be used subsequently
reset(tgacChannel);
rx = awgnChannel(rx);
% Allow same noise realization to be used subsequently
reset(awgnChannel);

% Estimate symbol timing
tOff = wlanSymbolTimingEstimate(rx(ind.LSTF(1):ind.LSIG(2),:),vhtSE.ChannelBandwidth);

% Channel estimation
vhtltf = rx(tOff+(ind.VHTLTF(1):ind.VHTLTF(2)),:);
vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,vhtSE);
chanEstSE = wlanVHTLTFChannelEstimate(vhtltfDemod,vhtSE);

The received data field is demodulated and equalized to recover OFDM symbols for each spatial
stream.

% Demodulate and equalize the data
vhtdata = rx(tOff+(ind.VHTData(1):ind.VHTData(2)),:);
[~,~,symSE] = wlanVHTDataRecover(vhtdata,chanEstSE,noiseVar,vhtSE,...
 'PilotPhaseTracking','None');

The constellation of each spatial stream is plotted below.

refSym = wlanReferenceSymbols(cfgVHT); % Reference constellation
seConst = vhtBeamformingPlotConstellation(symSE,refSym, ...
 'Spatial Expansion Transmission Equalized Symbols');

3 Signal Transmission

3-24

The variance in the constellation is approximately the same for each spatial stream as the SNRs are
approximately the same. This is because the average power in the channel is on average
approximately the same per space-time stream:

disp('Mean received channel power per space-time stream with spatial expansion: ')
for i = 1:NumSTS
 fprintf(' Space-time stream %d: %2.2f W\n',i, ...
 sum(mean(chanEstSE(:,i,:).*conj(chanEstSE(:,i,:)),1),3))
end

Mean received channel power per space-time stream with spatial expansion:
 Space-time stream 1: 0.73 W
 Space-time stream 2: 0.50 W

Transmission with Beamforming

When the receiver is capable of being a beamformee, a beamformed transmission can create a higher
SNR compared to spatial expansion. We will now show the advantage of having channel state

 802.11ac Transmit Beamforming

3-25

information available to create and use a steering matrix. To calculate a beamforming steering
matrix, an NDP is passed through the channel. 'Direct' spatial mapping is used for the NDP
transmission and the number of space-time streams is configured to match the number of transmit
antennas. This allows the VHT-LTF to be used to sound channels between each of the transmit
antennas and receive antennas. The calculated beamforming matrix is then used to beamform a
transmission through the channel. The same channel realization is used for sounding and data
transmission and there is no feedback compression between beamformee and beamformer, therefore
the beamforming can be regarded as perfect in this example.

% Configure a sounding packet
vhtSound = cfgVHT;
vhtSound.APEPLength = 0; % NDP so no data
vhtSound.NumSpaceTimeStreams = NumTxAnts;
vhtSound.SpatialMapping = 'Direct'; % Each TxAnt carries a STS

% Generate sounding waveform
soundingPSDU = [];
tx = wlanWaveformGenerator(soundingPSDU,vhtSound);

% Pass sounding waveform through the channel and add noise. Trailing zeros
% are added to allow for channel filter delay.
rx = tgacChannel([tx; zeros(15,NumTxAnts)]);
% Allow same channel realization to be used subsequently
reset(tgacChannel);
rx = awgnChannel(rx);
% Allow same noise realization to be used subsequently
reset(awgnChannel);

% Estimate symbol timing
tOff = wlanSymbolTimingEstimate(rx(ind.LSTF(1):ind.LSIG(2),:),vhtSound.ChannelBandwidth);

Channel estimation is performed using the sounding packet to estimate the actual channel response
between each transmit and receive antenna.

% Channel estimation
vhtLLTFInd = wlanFieldIndices(vhtSound,'VHT-LTF');
vhtltf = rx(tOff+(vhtLLTFInd(1):vhtLLTFInd(2)),:);
vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,vhtSound);
chanEstSound = wlanVHTLTFChannelEstimate(vhtltfDemod,vhtSound);

The channel estimated using wlanVHTLTFChannelEstimate includes cyclic shifts applied at the
transmitter to each space-time stream. To calculate a beamforming steering matrix the cyclic shifts
applied at the transmitter are removed from the channel estimate.

% Remove impact of cyclic shift from channel estimate
chanEstSound = vhtBeamformingRemoveCSD(chanEstSound, ...
 vhtSound.ChannelBandwidth,vhtSound.NumSpaceTimeStreams);

In this example the beamforming steering matrix is calculated using singular value decomposition
(SVD) [3]. The SVD of the channel matrix results in two unitary matrices, U and V, and a diagonal
matrix of singular values S. The first NumSTS columns of V per subcarrier are used as the
beamforming steering matrix. The SVD is computed using the function svd.

chanEstPerm = permute(chanEstSound,[3 2 1]); % permute to Nr-by-Nt-by-Nst
V = zeros(Nst,NumTxAnts,NumRxAnts);
for i = 1:Nst
 [U,S,V(i,:,:)] = svd(chanEstPerm(:,:,i),'econ');

3 Signal Transmission

3-26

end
steeringMatrix = V(:,:,1:NumSTS); % Nst-by-Nt-by-Nsts

The beamforming steering matrix calculated above is applied as a custom spatial mapping matrix and
is used to send data through the same channel.

% Configure a transmission with beamforming
vhtBF = cfgVHT;
vhtBF.SpatialMapping = 'Custom';
% Permute steering matrix to Nst-by-Nsts-by-Nt
vhtBF.SpatialMappingMatrix = permute(steeringMatrix,[1 3 2]);

% Generate beamformed data transmission
tx = wlanWaveformGenerator(psdu,vhtBF);

% Pass through the channel and add noise. Trailing zeros
% are added to allow for channel filter delay.
rx = tgacChannel([tx; zeros(15,NumTxAnts)]);
rx = awgnChannel(rx);

% Estimate symbol timing
tOff = wlanSymbolTimingEstimate(rx(ind.LSTF(1):ind.LSIG(2),:),vhtBF.ChannelBandwidth);

% Channel estimation
vhtltf = rx(tOff+(ind.VHTLTF(1):ind.VHTLTF(2)),:);
vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,vhtBF);
chanEstBF = wlanVHTLTFChannelEstimate(vhtltfDemod,vhtBF);

The received data field is demodulated and equalized to recover OFDM symbols for each spatial
stream.

% Demodulate and equalize the data
vhtdata = rx(tOff+(ind.VHTData(1):ind.VHTData(2)),:);
[~,~,symBF] = wlanVHTDataRecover(vhtdata,chanEstBF,noiseVar,vhtBF,...
 'PilotPhaseTracking','None');

The equalized constellation for each spatial stream is plotted below. Note that the higher order
spatial stream has a larger variance. This is due to the ordered singular values of the channels used
in SVD beamforming.

bfConst = vhtBeamformingPlotConstellation(symBF,refSym, ...
 'Beamformed Transmission Equalized Symbols');

 802.11ac Transmit Beamforming

3-27

This ordering is also visible in the average power of the received space-time streams. The power of
the received first space-time stream is larger than the second space-time stream. This is because the
received signal strength is a function of the singular values of the channel which SVD orders in a
decreasing fashion.

disp('Mean received channel power per space-time stream with SVD transmit beamforming: ')
for i = 1:NumSTS
 fprintf(' Space-time stream %d: %2.2f W\n',i, ...
 sum(mean(chanEstBF(:,i,:).*conj(chanEstBF(:,i,:)),1),3))
end

Mean received channel power per space-time stream with SVD transmit beamforming:
 Space-time stream 1: 2.08 W
 Space-time stream 2: 0.45 W

3 Signal Transmission

3-28

Comparison and Conclusion

The figure below plots the equalized constellation from the spatial expansion and beamformed
transmissions for all spatial streams. Note the improved constellation using SVD-based transmit
beamforming.

str = sprintf('%dx%d',NumTxAnts,NumRxAnts);
compConst = vhtBeamformingPlotConstellation([symSE(:) symBF(:)],refSym, ...
 'Beamformed Transmission Equalized Symbols', ...
 {[str ' Spatial Expansion'],[str ' Transmit Beamforming']});

The improvement can also be measured through the RMS and maximum error vector magnitude
(EVM). EVM is a measure of demodulated signal quality.

EVM = comm.EVM;
EVM.AveragingDimensions = [1 2]; % Average over all subcarriers and symbols
EVM.MaximumEVMOutputPort = true;
EVM.ReferenceSignalSource = 'Estimated from reference constellation';

 802.11ac Transmit Beamforming

3-29

EVM.ReferenceConstellation = refSym;

[rmsEVMSE,maxEVMSE] = EVM(symSE); % EVM using spatial expansion
[rmsEVMBF,maxEVMBF] = EVM(symBF); % EVM using beamforming

for i = 1:Nss
 fprintf(['Spatial stream %d EVM:\n' ...
 ' Spatial expansion: %2.1f%% RMS, %2.1f%% max\n' ...
 ' Transmit beamforming: %2.1f%% RMS, %2.1f%% max\n'], ...
 i,rmsEVMSE(i),maxEVMSE(i),rmsEVMBF(i),maxEVMBF(i));
end

Spatial stream 1 EVM:
 Spatial expansion: 9.2% RMS, 44.8% max
 Transmit beamforming: 2.0% RMS, 8.6% max
Spatial stream 2 EVM:
 Spatial expansion: 9.2% RMS, 52.3% max
 Transmit beamforming: 4.1% RMS, 12.7% max

This example demonstrates that if a receiver is capable of being a beamformee, the SNR can
potentially be improved when a transmission is beamformed compared to a spatial expansion
transmission. The increase in received power when using beamforming can lead to more reliable
demodulation or potentially even a higher order modulation and coding scheme to be used for the
transmission.

In a realistic operational simulation the performance of beamforming would be degraded due to the
delay between channel state information calculation and feedback by the beamformee and feedback
quantization. For more information see [2].

Appendix

This example uses these helper functions.

• helperSpatialExpansionMatrix.m
• vhtBeamformingNoiseVariance.m
• vhtBeamformingPlotConstellation.m
• vhtBeamformingRemoveCSD.m

Selected Bibliography

1 IEEE Std 802.11ac™-2013 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

2 Perahia, Eldad, and Robert Stacey. Next Generation Wireless LANS: 802.11n and 802.11ac.
Cambridge University Press, 2013.

3 IEEE Std 802.11™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

3 Signal Transmission

3-30

802.11ah Waveform Generation
This example shows how to generate IEEE® 802.11ah™ S1G waveforms and highlights some of the
key features of the standard.

Introduction

802.11ah is intended for extended range and low power applications in the unlicensed sub 1 GHz
band, including machine to machine communication and the internet of things. 802.11ah uses
narrower contiguous channel bandwidths than 802.11n™ and 802.11ac™ to facilitate long range, low
power communication at a lower data rate. Valid channel bandwidths are 1, 2, 4, 8, and 16 MHz.

Since 802.11ah uses the same underlying physical layer technologies as 802.11n and 802.11ac, the
processing chains are very similar. With the exception of 1 MHz transmissions, in general data is
modulated using the same process as in 802.11ac with a 1/10 clock rate.

In this example a number of 802.11ah S1G [1] waveforms are generated to highlight some of the key
modes and features of the 802.11ah standard.

802.11ah Modes and PHY Features

The 802.11ah standard defines three modes:

• The 1 MHz mode (S1G_1M) is intended for low data rate applications. This mode features an
extended preamble and a new modulation and coding scheme, MCS10, to improve robustness.
MCS10 is BPSK 1/2 rate with 2 times repetition. When MCS10 is used the short training field
(STF) is boosted by 3 dB to allow for packet detection [2]. In this mode the whole PPDU is
beamformed.

• The >= 2 MHz long preamble mode (S1G_LONG) is used for single or multi-user transmissions
with a 2, 4, 8, or 16 MHz channel bandwidth. The PPDU is similar to a 802.11ac VHT PPDU,
consisting of an omni-directional portion and beam-changeable portion.

• The >= 2 MHz short preamble mode (S1G_SHORT) is used for single-user transmissions with a 2,
4, 8, or 16 MHz channel bandwidth. In this mode the whole PPDU is beamformed.

The 802.11ah standard is intended to operate outdoors as well as indoors. Traveling Pilots have been
introduced to compensate for Doppler spread caused by reflections due to vehicular motion. In
previous 802.11 standards the pilot locations are fixed to the same subcarrier for the duration of a
packet. Tracking the varying channel conditions due to a high Doppler environment is not effective
with fixed pilot locations. Traveling pilots change the subcarriers that carry the pilots over time
which improves the ability to track changing channel conditions. In this example a waveform is
generated for each of the three modes introduced above with configurations for MCS10 and traveling
pilot highlighted.

S1G 1MHz Mode

An S1G 1 MHz PPDU consists of five fields, all of which can be beamformed:

1 STF - The short training field, which is used for coarse synchronization
2 LTF1 - The first long training field, which is used for fine synchronization and initial channel

estimation
3 SIG - The signaling field, which the receiver decodes to determine transmission parameters
4 LTF2-N - The subsequent long training fields, which is used for MIMO channel estimation

 802.11ah Waveform Generation

3-31

5 Data - The data field, which carries the user data payload

Examples of waveform generation for MCS0 and MCS10 1 MHz transmissions are shown. When
MCS10 is used a 3 dB power boost is applied to the short training field. This power boost will be
visualized.

The function wlanWaveformGenerator returns an S1G configuration object. Create an S1G
configuration object for 1 MHz bandwidth, 1 transmit antenna, 1 space-time stream, BPSK rate 1/2
(MCS0), and a 256 byte APEP length.

cfg1MHz = wlanS1GConfig;
cfg1MHz.ChannelBandwidth = 'CBW1';
cfg1MHz.NumTransmitAntennas = 1;
cfg1MHz.NumSpaceTimeStreams = 1;
cfg1MHz.MCS = 0;
cfg1MHz.APEPLength = 256;

Create a PSDU of random bits using the required length for the specified format configuration.

psdu = randi([0 1],cfg1MHz.PSDULength*8,1);

Generate an S1G waveform using the configured S1G format object and PSDU as inputs to the
waveform generator, wlanWaveformGenerator. The waveform generator modulates PSDU bits
according to a format configuration. The waveform generator also performs OFDM windowing. In this
example windowing is disabled for clearer visualization.

% Generate waveform with windowing disabled
txMCS0 = wlanWaveformGenerator(psdu,cfg1MHz,'WindowTransitionTime',0);

Change the MCS of cfg1MHz to 10 and generate a second waveform to demonstrate the STF power
boost.

cfg1MHz.MCS = 10;
txMCS10 = wlanWaveformGenerator(psdu,cfg1MHz,'WindowTransitionTime',0);

The power is plotted for the first 320 microseconds of both waveforms to capture the duration of the
STF and first LTF in the 1 MHz transmission. Note the power boost of the STF when MCS10 is used.
The power boost is required to obtain sufficient packet detection sensitivity to support MCS10 [2].

t = 320; % Duration to plot in microseconds
sr = wlanSampleRate(cfg1MHz); % Sample rate Hz
tick = (1/sr)*1e6; % Microseconds per sample
hf = figure;
hp(1) = plot(0:tick:t-tick,20*log10(abs(txMCS10(1:t*sr*1e-6,:))),'bx-');
hold on;
hp(2) = plot(0:tick:t-tick,20*log10(abs(txMCS0(1:t*sr*1e-6,:))),'ro-');
xlim([0 t-1]);
ylim([-20 15]);
s1gWavGenPlotFieldOverlay(cfg1MHz,hf);
grid on;
legend(hp,'1 MHz MCS10','1 MHz MCS0','Location','SouthWest');
title('Power of 1 MHz PPDU');
xlabel('Time (us)');
ylabel('Power (dBW)');

3 Signal Transmission

3-32

S1G >=2 MHz Long Preamble Mode

The 802.11ah long preamble supports single and multi-user transmissions. The long preamble PPDU
consists of two portions; the omni-directional portion and the beam-changeable portion.

The omni-directional portion is transmitted to all users without beamforming. It consists of three
fields:

1 STF - The short training field, which is used for coarse synchronization
2 LTF1 - The first long training field, which is used for fine synchronization and initial channel

estimation
3 SIG-A - The signaling A field, which the receiver decodes to determine transmission parameters

relevant to all users

The beam-changeable portion can be beamformed to each user. It consists of four fields:

1 D-STF - The beamformed short training field, which is used by the receiver for automatic gain
control

2 D-LTF - The beamformed long training fields, which is used for MIMO channel estimation
3 SIG-B - The signaling B field. In a multi-user transmission the SIG-B signals the MCS for each

user. In a single-user transmission the MCS is signaled in the SIG-A field of the omni-directional
portion of the preamble. Therefore in a single-user transmission the SIG-B symbol transmitted is
an exact repetition of the first D-LTF. This repetition allows for improved channel estimation.

4 Data - The data field, which carries the user data payload

 802.11ah Waveform Generation

3-33

To visualize repetition of the first D-LTF an S1G 2 MHz long preamble format configuration object is
created using the wlanS1GConfig function and configured for one space-time stream and one
transmit antenna.

cfgSU = wlanS1GConfig;
cfgSU.ChannelBandwidth = 'CBW2';
cfgSU.Preamble = 'Long';
cfgSU.NumUsers = 1;
cfgSU.NumSpaceTimeStreams = 1;
cfgSU.NumTransmitAntennas = 1;
cfgSU.MCS = 1;
cfgSU.APEPLength = 150;

The >=2 MHz long preamble waveform with a single space-time stream is generated using the
cfgSU object.

% Generate a PSDU containing random bits
psdu = randi([0 1],cfgSU.PSDULength*8,1);

% Generate a PPDU waveform
txSU = wlanWaveformGenerator(psdu,cfgSU);

The D-LTF and SIG-B fields are plotted. Note the repetition of the D-LTF in the SIG-B symbol.

s1gWavGenPlotSIGB(cfgSU,txSU);

As a comparison a 2 MHz long preamble multi-user waveform will be generated and visualized. First,
a format configuration object is created for two users. The user positions, number of space times

3 Signal Transmission

3-34

streams, MCS and APEP length are configured per user using vectors to parameterize the relevant
properties of the cfgMU object.

cfgMU = wlanS1GConfig;
cfgMU.ChannelBandwidth = 'CBW2';
cfgMU.Preamble = 'Long';
cfgMU.NumUsers = 2;
cfgMU.UserPositions = [0 1];
cfgMU.NumSpaceTimeStreams = [1 1];
cfgMU.NumTransmitAntennas = sum(cfgMU.NumSpaceTimeStreams);
cfgMU.MCS = [1 2];
cfgMU.APEPLength = [150 250];

A random PSDU is created for each user and a multi-user waveform is generated. The PSDU length
for each user, cfgMU.PSDULength, is calculated based on transmission properties by the cfgMU
object.

% Generate cell array containing the PSDUs for all users
psdu = cell(cfgMU.NumUsers,1);
for i = 1:cfgMU.NumUsers
 psdu{i} = randi([0 1],cfgMU.PSDULength(i),1);
end

% Generate waveform
txMU = wlanWaveformGenerator(psdu,cfgMU);

The two D-LTF fields and SIG-B fields are plotted for the first space-time stream. Note the SIG-B
symbol is no longer a repetition of D-LTF1 as it carries the MCS per user.

s1gWavGenPlotSIGB(cfgMU,txMU);

 802.11ah Waveform Generation

3-35

S1G >=2 MHz Short Preamble Mode

An S1G >=2 MHz short preamble waveform consists of five fields, all of which can be beamformed:

1 STF - The short training field, which is used for coarse synchronization
2 LTF1 - The first long training field, which is used for fine synchronization and initial channel

estimation
3 SIG - The signaling field, which the receiver decodes to determine transmission parameters
4 LTF2-N - The subsequent long training fields, which is used for MIMO channel estimation
5 Data - The data field, which carries the user data payload

In this example S1G 2 MHz short preamble waveforms with and without traveling pilots will be
generated.

Traveling pilots are an optional feature for all three S1G modes to allow for outdoor links where
Doppler spread is potentially introduced due to moving vehicles. The traveling pilots are boosted 1.5
times compared to fixed pilots to improve channel estimation performance in this environment [3].

Two >= 2 MHz short preamble waveforms are generated; one with fixed pilots and one with traveling
pilots. First a S1G 2 MHz short preamble format configuration with fixed pilot locations is created
using the wlanS1GConfig object.

cfgFix = wlanS1GConfig;
cfgFix.ChannelBandwidth = 'CBW2';
cfgFix.Preamble = 'Short';

3 Signal Transmission

3-36

cfgFix.NumTransmitAntennas = 1;
cfgFix.NumSpaceTimeStreams = 1;
cfgFix.MCS = 0; % BPSK so same power on all subcarriers for analysis
cfgFix.APEPLength = 100;
cfgFix.TravelingPilots = false; % Fixed pilot subcarriers

Generate a fixed pilot waveform using the cfgFix object and random PSDU bits. The PSDU bits are
created using the required length for the specified format configuration.

% Generate a PSDU containing random bits
psdu = randi([0 1],cfgFix.PSDULength*8,1);

% Generate a PPDU waveform
txFix = wlanWaveformGenerator(psdu,cfgFix);

Extract the data field from the time domain waveform using the known duration of the preamble. Plot
the magnitude of the OFDM symbols and subcarriers. The location of nulls, data carrying subcarriers,
and pilot carrying subcarriers are highlighted. The pilot locations remain unchanged for the duration
of the packet.

s1gWavGenPlotGrid(txFix,cfgFix, ...
 'Demodulated OFDM symbols with fixed pilots highlighted')

Now a waveform is generated using the same configuration but with traveling pilots. This could be
accomplished by changing the TravelingPilots property of the existing configuration object and
regenerating the waveform, but in this example a separate object is created and used.

 802.11ah Waveform Generation

3-37

% Copy the format configuration object and enable traveling pilots
cfgTravel = cfgFix;
cfgTravel.TravelingPilots = true;

% Generate waveform with traveling pilots
txTravel = wlanWaveformGenerator(psdu,cfgTravel);

The magnitude of the OFDM symbols and subcarriers is plotted again. The pilot locations now change
per OFDM symbol. The magnitude of pilot subcarriers is 1.5 times that of data carrying subcarriers.

s1gWavGenPlotGrid(txTravel,cfgTravel, ...
 'Demodulated OFDM symbols with traveling pilots highlighted')

Conclusion

This example has demonstrated how to generate waveforms for different 802.11ah S1G modes and
highlighted some of the key features of the standard.

Appendix

This example uses the following helper functions:

• s1gWavGenPlotFieldOverlay.m
• s1gWavGenPlotSIGB.m
• s1gWavGenPlotGrid.m

3 Signal Transmission

3-38

Selected Bibliography

1 IEEE P802.11ah™/D5.0 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 2: Sub 1 GHz License Exempt Operation.

2 Sameer Vermani et al. "Preamble Format for 1 MHz", IEEE 802.11-11/1482r4, 2012-01-16.
3 Ron Porat et al. "Traveling Pilots", IEEE 8902.11-12/1322r0, 2012-11-12.

 802.11ah Waveform Generation

3-39

802.11n Link in Simulink
This example shows how to simulate an IEEE® 802.11n™ HT link in Simulink® with WLAN
Toolbox™.

Introduction

An 802.11n HT [1] link with a fading channel is simulated in this model. Multiple packets are
transmitted through a 2-by-2 TGn MIMO channel, demodulated and the PSDUs recovered. The
PSDUs are compared to those transmitted to determine the packet error rate. Packet detection,
timing synchronization, carrier frequency offset correction and pilot phase tracking are performed by
the receiver.

The MATLAB Function block allows MATLAB® functions to be used in a Simulink model. In this
example an 802.11n link is modeled in Simulink by using MATLAB Function blocks to call WLAN
Toolbox functions. For an equivalent 802.11n simulation in MATLAB see the example “802.11n Packet
Error Rate Simulation for 2x2 TGn Channel” on page 5-17.

Structure of the Example

The model has four main parts:

• Transmitter: Generates a random PSDU and creates an 802.11n HT packet.
• Channel: Models a TGn 2x2 MIMO channel with AWGN.
• Receiver: Recovers the transmitted PSDU by performing packet detection, time and frequency

synchronization, MIMO channel estimation and PSDU demodulation and decoding.
• Analysis: Compares the transmitted and recovered PSDUs to determine the packet error rate, and

displays the equalized symbols.

The following sections describe the transmitter and receiver in more detail.

3 Signal Transmission

3-40

Transmitter

The Transmitter block creates a random PSDU and encodes the bits to create a single packet
waveform. The wlanWaveformGenerator function is called within the Packet Generator block to
generate a waveform for a packet. An idle period is added after each packet to create periodic bursts.

Receiver

The receiver has two components: packet detection and packet recovery.

 802.11n Link in Simulink

3-41

The wlanPacketDetect function is called within the Packet Detector block. If a packet is detected
the Packet Recovery subsystem is enabled to process the detected packet.

The Packet Recovery subsystem processing consists of the following steps:

1 Coarse carrier frequency offset is estimated and corrected.
2 Fine timing synchronization is established.
3 Fine carrier frequency offset is estimated and corrected.
4 The HT-LTF is extracted from the synchronized received waveform. The HT-LTF is OFDM

demodulated and channel estimation is performed.
5 The HT Data field is extracted from the synchronized received waveform.
6 Noise estimation is performed using the demodulated data field pilots.
7 The PSDU is recovered using the extracted field, the channel and noise power estimates.

Results and Displays

When the simulation is run, the packet error rate is displayed. This is updated after each packet is
processed. The equalized data symbols are also displayed for each packet processed. By default, 200
packets are simulated.

3 Signal Transmission

3-42

Exploring the Example

Try changing the signal to noise ratio (SNR) in the AWGN channel block. Decreasing the SNR
increases the packet error rate and the noise visible in the equalized symbol constellation. Link
parameters such as the modulation and coding scheme (MCS), number of transmit and receive
antennas and space-time streams can be changed in the Model Parameters block.

Selected Bibliography

1 IEEE Std 802.11™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

 802.11n Link in Simulink

3-43

Signal Reception

4

Recover and Analyze Packets in 802.11 Waveform
This example blindly detects, decodes, and analyzes multiple IEEE 802.11a™, IEEE 802.11n™, IEEE
802.11ac™, and IEEE 802.11ax™ packets in a waveform. The example provides a summary of the
detected packets and displays the MAC contents, error vector magnitude (EVM), power, and signaling
information for a selected packet.

Introduction

In this example we detect, decode, and analyze multiple packets within a waveform. This example can
decode OFDM non-HT, non-HT duplicate, HT, VHT [1 on page 4-0], HE MU, HE SU, and HE ER SU
[2 on page 4-0] packet formats. The receiver does not know any transmission parameters, except
for the channel bandwidth, and retrieves these parameters by decoding the preamble fields of the
packet. These measurements are displayed for a detected packet:

• The spectrum and time domain samples.
• The signaling field contents.
• The resource unit and user information for an HE waveform.
• The constellation of the equalized data symbols.
• The EVM of the signaling fields.
• The EVM per data subcarrier averaged over spatial streams and symbols.
• The EVM per data symbol averaged over spatial streams and subcarriers.
• The MAC frame contents: A-MPDU deaggregation status, Address1, Address2, Frame Check

Sequence (FCS) and Frame Type.

Setup Waveform Recovery Parameters

This example analyzes I/Q data containing non-HT and HE packets. The useSDR variable controls the
data source for this example:

• When set to false, comm.BasebandFileReader reads a synthetic waveform stored in a binary
file format.

• When set to true, an SDR platform captures an off-the-air-waveform from a commercial device.

useSDR = ;

Reception with an SDR Device

This section demonstrates how to capture an off-the-air-waveform using an SDR device.
Communications Toolbox supports radio communication with several SDR devices. For a list of
supported devices and for an overview of how to install and setup a support package for your device,
refer to the documentation of these support packages.

Communications Toolbox Support Package for Analog Devices ADALM-Pluto Radio

• “Installation and Setup” (Communications Toolbox Support Package for Analog Devices ADALM-
Pluto Radio) and “Supported Hardware” (Communications Toolbox Support Package for Analog
Devices ADALM-Pluto Radio)

• Use Pluto as deviceName

Communications Toolbox Support Package for USRP Embedded Series Radio

4 Signal Reception

4-2

• “Installation and Setup” (Communications Toolbox Support Package for USRP Embedded Series
Radio) and “Hardware Support” (Communications Toolbox Support Package for USRP Embedded
Series Radio)

• Use E3xx as deviceName

Communications Toolbox Support Package for Xilinx Zynq-Based Radio

• “Installation and Setup” (Communications Toolbox Support Package for Xilinx Zynq-Based Radio)
and “Hardware Support” (Communications Toolbox Support Package for Xilinx Zynq-Based Radio)

• Use AD936x or FMCOMMS5 as deviceName

% Configure the analysis source
if useSDR %#ok<*UNRCH>

 deviceName = ; % Device name

 frequencyBand = ; % Frequency band

 channelNumber = ; % WLAN channel number

 captureTime = ; % Signal capture duration in seconds

 sr = ; % Captured sampling rate

 chanBW = ; % Channel bandwidth of all packets within the waveform

 % Set the center frequency to the corresponding channel number. The
 % center frequency should be centered on the channel bandwidth.
 fc = helperWLANChannelFrequency(channelNumber,frequencyBand);
 rx = sdrrx(deviceName,'BasebandSampleRate',sr,'CenterFrequency',fc,'OutputDataType','double');
 rxWaveform = capture(rx,captureTime,'Seconds');
 release(rx);
end

To view an example on how to recover 802.11a™ OFDM non-HT beacon frames transmitted over the
air from the commercial 802.11 hardware see the “802.11 OFDM Beacon Receiver with USRP®
Hardware” on page 10-3 example.

Import a Captured Waveform from a File

This section loads I/Q data from an existing binary file using comm.BasebandFileReader. The
baseband file format includes the sample rate and the number of channels in the captured waveform.
Alternately you can load the waveform in a MAT-file format.

% Configure the analysis source
if ~useSDR
 BBR = comm.BasebandFileReader('wlanWaveform.bb'); % Create a baseband file reader object
 chanBW = 'CBW20'; % Channel bandwidth of all packets within the waveform
 bbrInfo = info(BBR);
 BBR.SamplesPerFrame = bbrInfo.NumSamplesInData; % Number of sample in the waveform
 rxWaveform = BBR(); % Load the I&Q sample from a binary file
 sr = BBR.SampleRate; % Sampling rate of the input signal
 release(BBR);
end

To view an example that recovers beacon packets from a baseband file see the “802.11 OFDM Beacon
Receiver with Captured Data” on page 4-41 example.

 Recover and Analyze Packets in 802.11 Waveform

4-3

Signal Recovery and Analysis

This section detects, analyzes, and displays a summary of the detected packets. All packets in the
waveform must have the specified channel bandwidth, chanBW.

% Create a WaveformAnalyzer object to parse and analyze the packet within a waveform
analyzer = WaveformAnalyzer;
process(analyzer,rxWaveform,chanBW,sr);

% Display the summary of the detected packets
detectionSummary(analyzer);

 Summary of the Detected Packets

detSummary=11×9 table
 Number Format PHY Status Power (dBm) CFO (Hz) Offset (samples) MAC Contents RMS EVM (dB) Max EVM (dB)
 ______ ________ __________ ___________ ________ ________________ ____________ ____________ ____________

 1 "Non-HT" "Success" 12.7 61431 97 "Beacon" -25.824 -17.272
 2 "Non-HT" "Success" 13.08 -39757 2577 "RTS" -24.937 -17.737
 3 "Non-HT" "Success" 13.01 62250 4017 "CTS" -26.181 -18.982
 4 "HE-MU" "Success" 14.98 -39660 5297 "A-MPDU" -25.353 -12.353
 5 "Non-HT" "Success" 13.04 -39437 18657 "Block Ack" -25.564 -17.118
 6 "Non-HT" "Success" 13.07 -29899 20417 "RTS" -25.082 -16.625
 7 "Non-HT" "Success" 13.01 52489 21857 "CTS" -26.118 -18.372
 8 "VHT" "Success" 17.43 62290 23137 "A-MPDU" -20.9 -10.955
 9 "Non-HT" "Success" 14.99 -38861 28337 "RTS" -27.842 -20.114
 10 "Non-HT" "Success" 14.94 42363 29777 "CTS" -27.409 -19.042
 11 "HT-MF" "Success" 15.03 22238 31058 "A-MPDU" -26.55 -17.287

Use the pktNum variable to display the MAC and PHY analysis for a selected packet.

pktNum = ;

% Display the MAC information of the selected packet
macSummary(analyzer,pktNum);

 Recovered MPDU Summary of Packet 4

 AMPDU/MPDU Number STAID Address1 Address2 AMPDU/MPDU Decode Status MAC Frame Type
 _________________ _____ ______________ ______________ ________________________ ______________

 "AMPDU1_MPDU1" 1 "1342ABC2FF1F" "00123456789B" "Success" "QoS Data"
 "AMPDU2_MPDU1" 2 "23FFAB1234AC" "00123456789B" "Success" "QoS Data"
 "AMPDU3_MPDU1" 3 "13EF35781356" "00123456789B" "Success" "QoS Data"
 "AMPDU4_MPDU1" 4 "159A123AFFFF" "00123456789B" "Success" "QoS Data"

% Display the time samples and the spectrum of the detected packet
plotWaveform(analyzer,pktNum)

4 Signal Reception

4-4

 Recover and Analyze Packets in 802.11 Waveform

4-5

% Display the packet field information of the selected packet
fieldSummary(analyzer,pktNum);

 Field Summary of Packet 4 (HE-MU)

 Field Name Modulation Num Symbols Parity Check/CRC Power (dBm) RMS EVM (dB) Max EVM (dB)
 __________ __________ ___________ ________________ ___________ ____________ ____________

 L-STF BPSK 2 14.59
 L-LTF BPSK 2 14.61
 L-SIG BPSK 1 Pass 14.96 -27.59 -22.62
 RL-SIG BPSK 1 Pass 14.86 -27.14 -19.87
 HE-SIG-A BPSK 2 Pass 15.37 -26.14 -19.54
 HE-SIG-B BPSK 5 Pass 14.98 -27.56 -20.08
 HE-STF BPSK 1 14.95
 HE-LTF BPSK 2 15.01
 Data 35 14.99 -25.35 -12.35

% Display signaling field information of the selected packet
signalingSummary(analyzer,pktNum);

 Signaling Field Summary of Packet 4 (HE-MU)

 Property Value Property Value Property Value
 ________________ _____ ____________________ _____ ______________________ _____

4 Signal Reception

4-6

 L-SIG Length 467 Bandwidth CBW20 Num HE-LTF Symbols 2
 L-SIG Rate 0xB Num HE-SIG-B Symbols 5 LDPC Extra Symbol True
 UL/DL Indication DL SIGB Compression False STBC False
 SIGB MCS 0 Guard Interval 3.2 Pre-FEC Padding Factor 1
 SIGB DCM False HE-LTF Type 4 PE Disambiguity False
 BSS Color 0 Doppler False
 Spatial Reuse 0 TXOP 127

% Display the RU information
ruSummary(analyzer,pktNum);

 Resource Unit (RU) Information of Packet 4 (HE-MU)

 RU Number RU Size Subcarrier Index (Start) Subcarrier Index (End) Num Users Num STS Power (dBm)
 _________ _______ ________________________ ______________________ _________ _______ ___________

 "RU1" 52 -121 -70 1 1 8.98
 "RU2" 52 -68 -17 1 1 8.96
 "RU3" 52 17 68 1 2 8.97
 "RU4" 52 70 121 1 1 8.97

% Display the user information
userSummary(analyzer,pktNum);

 User Information of Packet 4 (HE-MU)

 STAID RU Number MCS Modulation Code Rate DCM Channel Coding Num STS Transmit BeamForming
 _____ _________ ___ __________ _________ ___ ______________ _______ ____________________

 1 "RU1" 0 "BPSK" "1/2" 0 "LDPC" 1 0
 2 "RU2" 2 "QPSK" "3/4" 0 "LDPC" 1 0
 3 "RU3" 4 "16QAM" "3/4" 0 "LDPC" 2 0
 4 "RU4" 6 "64QAM" "3/4" 0 "LDPC" 1 0

% Display EVM per spatial streams for all user
userEVM(analyzer,pktNum);

 User EVM per Spatial Stream of Packet 4 (HE-MU)

 STAID Spatial Stream Index RMS EVM (dB) Max EVM (dB)
 _____ ____________________ ____________ ____________

 1 1 -26.391 -17.295
 2 1 -27.401 -19.682
 3 1 -23.564 -12.353
 3 2 -23.122 -14.444
 4 1 -27.278 -17.793

% Plot constellation for all users
plotConstellation(analyzer,pktNum);

 Recover and Analyze Packets in 802.11 Waveform

4-7

% Plot EVM
plotEVM(analyzer,pktNum);

4 Signal Reception

4-8

 Recover and Analyze Packets in 802.11 Waveform

4-9

Further Exploration

The WaveformAnalyzer provides properties to control the pilot tracking, equalization, DC blocking,
and packet detection algorithms that can be tweaked to improve packet detection and analysis
performance.

False packet detections

False packet detections are detected packets that you do not believe are actual packets. Evaluating
the time domain waveform of the packet is one way to determine if the detected packet is legitimate.
If there is a significant number of false detections present these techniques may help reduce them:

• Enable the EnergyDetection property and set the EnergyDetectionThreshold property to a
suitable value given the noise floor of the capture device. When enabled, EnergyDetection only
detects packets with a power exceeding EnergyDetectionThreshold during the preamble.

• Increase the LLTFSNRDetectionThreshold and PacketDetectionThreshold properties to
discard packets with a low measured SNR during detection.

Missed packet detections

Missed packet detections are packets that you believe are in the waveform but have not been
detected.

• One possible reason a packet detection may have been missed is if a false detection occurred
earlier in the waveform, but the L-SIG check passed, causing samples to be skipped. To search
within possible false detections, enable the SearchWithinUnsupportedPacket property.

4 Signal Reception

4-10

• Alternatively try decreasing the PacketDetectionThreshold property to detect packet with
low SNR during detection.

For detail on 802.11ax and 802.11ac signal recovery and processing, see the “Recovery Procedure for
an 802.11ax Packet” on page 4-12 and “Recovery Procedure for an 802.11ac Packet” on page 4-30
examples.

Selected Bibliography

1 IEEE Std 802.11™ - 2016 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

 Recover and Analyze Packets in 802.11 Waveform

4-11

Recovery Procedure for an 802.11ax Packet
This example shows how to detect a packet and decode payload bits in a received IEEE® 802.11ax™
waveform. The receiver recovers the packet format parameters from the preamble fields to decode
the data field and the MAC frame.

Introduction

In an 802.11ax packet the transmission parameters are signaled to the receiver using the L-SIG, HE-
SIG-A, and HE-SIG-B preamble fields [1]:

• The L-SIG field contains information to allow the receiver to determine the transmission time of
the packet.

• The HE-SIG-A field contains common transmission parameters for HE-MU users and all
transmission parameters for HE-SU and HE-EXT-SU packets.

• The combination of length information in the L-SIG field, the modulation type, and the number of
OFDM symbols in the HE-SIG-A field determines the HE packet format.

• The HE-SIG-B field contains Resource unit (RU) allocation information and the transmission
parameters for the users in an HE-MU packet.

In this example we detect and decode an HE-MU packet within a generated waveform. This example
can also recover HE-SU and HE-EXT-SU packets. All transmission parameters apart from the channel
bandwidth are assumed to be unknown and are therefore retrieved from the decoded L-SIG, HE-SIG-
A, and HE-SIG-B preamble fields. The recovered transmission parameters are used to decode the HE-
Data field. Additionally, the following analysis is performed:

• The waveform of the detected packet is recovered and displayed.
• The spectrum of the detected packet is recovered and displayed.
• The constellation of the equalized data symbols for all spatial streams is displayed.
• The Error Vector Magnitude (EVM) of each field is measured.
• An A-MPDU is detected and Frame Check Sequence (FCS) is determined for the recovered MAC

frame.
• The EVM per data symbol and spatial stream averaged over subcarriers is displayed.
• The EVM per data subcarrier and spatial stream averaged over symbols is displayed.

Waveform Transmission

In this example an 802.11ax HE-MU waveform is synthesized but you can use a captured waveform.
You can use MATLAB® to acquire I/Q data from a wide range of instruments with the Instrument
Control Toolbox™ and software defined radio platforms.

The synthesized waveform is impaired by a 2x2 TGax indoor fading channel, additive white Gaussian
noise, and carrier frequency offset. To generate an HE-MU waveform we configure an HE-MU format
configuration object wlanHEMUConfig. Note that the wlanHEMUConfig configuration object is used
at the transmitter side only. The receiver will formulate an HE recovery configuration object
wlanHERecoveryConfig. The unknown properties of the HE recovery configuration object are set
after decoding the information bits in the L-SIG, HE-SIG-A, and HE-SIG-B fields. The helper function
heSigRecGenerateWaveform generates the impaired waveform. The following processing steps are
performed:

4 Signal Reception

4-12

• A random payload of MSDUs is created for the MAC frame, which is encoded into an HE-MU
packet.

• The waveform is passed through a TGax indoor fading channel model.
• Carrier frequency offset (CFO) and Additive white Gaussian noise (AWGN) are added to the

waveform.

% A mixed OFDMA and MU-MIMO configuration is defined for an HE-MU packet.
% The allocation index 17 defines two 52-tone RUs, with one user in each
% RU, and one 106-tone RU. The 106-tone RU has two users in a MU-MIMO
% configuration.
cfgMU = wlanHEMUConfig(17);
cfgMU.NumTransmitAntennas = 2;

% Configure RU 1 and user 1
cfgMU.RU{1}.SpatialMapping = 'Direct';
cfgMU.User{1}.STAID = 1;
cfgMU.User{1}.APEPLength = 1e3;
cfgMU.User{1}.MCS = 5;
cfgMU.User{1}.NumSpaceTimeStreams = 2;
cfgMU.User{1}.ChannelCoding = 'LDPC';

% Configure RU 2 and user 2
cfgMU.RU{2}.SpatialMapping = 'Fourier';
cfgMU.User{2}.STAID = 2;
cfgMU.User{2}.APEPLength = 500;
cfgMU.User{2}.MCS = 4;
cfgMU.User{2}.NumSpaceTimeStreams = 1;
cfgMU.User{2}.ChannelCoding = 'BCC';

% Configure RU 3 and user 1
cfgMU.RU{3}.SpatialMapping = 'Fourier';
cfgMU.User{3}.STAID = 3;
cfgMU.User{3}.APEPLength = 100;
cfgMU.User{3}.MCS = 2;
cfgMU.User{3}.NumSpaceTimeStreams = 1;
cfgMU.User{3}.ChannelCoding = 'BCC';

% Configure RU 3 and user 2
cfgMU.User{4}.STAID = 4;
cfgMU.User{4}.APEPLength = 500;
cfgMU.User{4}.MCS = 3;
cfgMU.User{4}.NumSpaceTimeStreams = 1;
cfgMU.User{4}.ChannelCoding = 'LDPC';

% Specify propagation channel
numRx = 2; % Number of receive antennas
delayProfile = 'Model-D'; % TGax channel delay profile

% Specify impairments
noisePower = -40; % Noise power to apply in dBW
cfo = 62e3; % Carrier frequency offset Hz

% Generate waveform
rx = heSigRecGenerateWaveform(cfgMU,numRx,delayProfile,noisePower,cfo);

 Recovery Procedure for an 802.11ax Packet

4-13

Packet Recovery

The signal to process is stored in the variable rx. The processing steps to recover a packet are:

• An HE recovery configuration object, wlanHERecoveryConfig is created. The object properties are
updated as preamble fields are decoded.

• The packet is detected and synchronized.
• The L-LTF is extracted and demodulated. The demodulated L-LTF symbols do not include tone

rotation for each 20 MHz segment as described in [2], section 21.3.7.5.
• The demodulated L-LTF symbols are used for channel and noise estimates.
• The time-domain signal containing samples equivalent to four OFDM symbols immediately

following the L-LTF are used to determine the HE packet format. The packet format is updated in
the wlanHERecoveryConfig object.

• The L-LTF is demodulated. The demodulated L-LTF symbols include tone rotation for each 20 MHz
segment as described in [2], section 21.3.7.5. The L-LTF channel estimates (with tone rotation)
are used to decode the pre-HE-LTF.

• The L-SIG and RL-SIG fields are extracted. The channel is estimated on an extra four subcarriers
per subchannel in the L-SIG and RL-SIG fields. The L-LTF channel estimates are updated to
include the channel estimates on the extra subcarriers.

• The information bits in the L-SIG field are recovered to determine the length of the packet in
microseconds.

• After HE-SIG-A decoding, the recovery configuration object is updated with common transmission
parameters for an HE-MU packet and all transmission parameters for HE-SU and HE-EXT-SU
packets.

• For an HE-MU packet format the HE-SIG-B field is decoded. For a non-compressed SIGB
waveform the HE-SIG-B common field is decoded first followed by HE-SIG-B user field. For a
compressed SIGB waveform only the HE-SIG-B user field is decoded.

• For an HE-MU format without SIGB compression the RU allocation and user transmission
parameters are recovered from the HE-SIG-B field. For a compressed SIGB waveform the RU
allocation information is inferred from HE-SIG-A field and the user transmission parameters are
determined from the HE-SIG-B user field bits.

• The wlanHERecoveryConfig object is created using the recovered transmission parameters for
each user after HE-SIG-B decoding.

• The HE-LTF field is extracted and demodulated. The demodulated symbols are used for channel
estimation of the subcarriers allocated to the user of interest. The MIMO channel estimates are
used to decode the HE-Data field.

• The HE-Data field is extracted and the PSDU bits are recovered using the wlanHERecoveryConfig
object for each user.

• Detect A-MPDU within the recovered PSDU and check the FCS for the recovered MAC frame.

Setup Waveform Recovery Parameters

In this example all transmission parameters apart from the channel bandwidth are assumed to be
unknown and will be recovered. A recovery configuration object, wlanHERecoveryConfig, is created
to store the recovered information in the L-SIG, HE-SIG-A, and HE-SIG-B preamble fields. The
transmission properties in wlanHERecoveryConfig are updated after subsequent decoding of the
preamble fields. The following code configures objects and variables for processing.

chanBW = cfgMU.ChannelBandwidth; % Assume channel bandwidth is known
sr = wlanSampleRate(cfgMU); % Sample rate

4 Signal Reception

4-14

% Specify pilot tracking method for recovering the data field. This can be:
% 'Joint' - use joint common phase error and sample rate offset tracking
% 'CPE' - use only common phase error tracking
% When recovering 26-tone RUs only CPE tracking is used as the joint
% tracking algorithm is susceptible to noise.
pilotTracking = 'Joint';

% Create an HE recovery configuration object and set the channel bandwidth
cfgRx = wlanHERecoveryConfig;
cfgRx.ChannelBandwidth = chanBW;

% The recovery configuration object is used to get the start and end
% indices of the pre-HE-SIG-B field.
ind = wlanFieldIndices(cfgRx);

% Setup plots for the example
[spectrumAnalyzer,timeScope,ConstellationDiagram,EVMPerSubcarrier,EVMPerSymbol] = heSigRecSetupPlots(sr);

% Minimum packet length is 10 OFDM symbols
lstfLength = double(ind.LSTF(2));
minPktLen = lstfLength*5; % Number of samples in L-STF

rxWaveLen = size(rx,1);

Front-End Processing

The front-end processing consists of packet detection, coarse carrier frequency offset correction,
timing synchronization, and fine carrier frequency offset correction. A while loop is used to detect
and synchronize a packet within the received waveform. The sample offset searchOffset is used to
index into rx to detect a packet. The first packet within rx is detected and processed. If the
synchronization fails for the detected packet, the sample index offset searchOffset is incremented
to move beyond the processed packet in rx. This is repeated until a packet has been successfully
detected and synchronized.

searchOffset = 0; % Offset from start of waveform in samples
while (searchOffset + minPktLen) <= rxWaveLen
 % Packet detection
 pktOffset = wlanPacketDetect(rx,chanBW,searchOffset);

 % Adjust packet offset
 pktOffset = searchOffset + pktOffset;
 if isempty(pktOffset) || (pktOffset + ind.LSIG(2) > rxWaveLen)
 error('** No packet detected **');
 end

 % Coarse frequency offset estimation and correction using L-STF
 rxLSTF = rx(pktOffset+(ind.LSTF(1):ind.LSTF(2)), :);
 coarseFreqOffset = wlanCoarseCFOEstimate(rxLSTF,chanBW);
 rx = helperFrequencyOffset(rx,sr,-coarseFreqOffset);

 % Symbol timing synchronization
 searchBufferLLTF = rx(pktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 pktOffset = pktOffset+wlanSymbolTimingEstimate(searchBufferLLTF,chanBW);

 % Fine frequency offset estimation and correction using L-STF
 rxLLTF = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);

 Recovery Procedure for an 802.11ax Packet

4-15

 fineFreqOffset = wlanFineCFOEstimate(rxLLTF,chanBW);
 rx = helperFrequencyOffset(rx,sr,-fineFreqOffset);

 % Timing synchronization complete: packet detected
 fprintf('Packet detected at index %d\n',pktOffset + 1);

 % Display estimated carrier frequency offset
 cfoCorrection = coarseFreqOffset + fineFreqOffset; % Total CFO
 fprintf('Estimated CFO: %5.1f Hz\n\n',cfoCorrection);

 break; % Front-end processing complete, stop searching for a packet
end

% Scale the waveform based on L-STF power (AGC)
gain = 1./(sqrt(mean(rxLSTF.*conj(rxLSTF))));
rx = rx.*gain;

Packet detected at index 404
Estimated CFO: 61942.9 Hz

Packet Format Detection

The time-domain samples equivalent to four OFDM symbols immediately following the L-LTF are used
to determine the HE packet format [1 Figure. 27-63]. The L-LTF is extracted and demodulated. For
format detection, the demodulated L-LTF symbols must not include tone rotation for each 20 MHz
segment as described in [2], section 21.3.7.5. The demodulated L-LTF is used for channel and noise
estimation. The L-LTF channel (without tone rotation) and noise power estimates are used to detect
the packet format.

rxLLTF = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
lltfDemod = wlanLLTFDemodulate(rxLLTF,chanBW);
lltfChanEst = wlanLLTFChannelEstimate(lltfDemod,chanBW);
noiseVar = helperNoiseEstimate(lltfDemod);

disp('Detect packet format...');
rxSIGA = rx(pktOffset+(ind.LSIG(1):ind.HESIGA(2)),:);
pktFormat = wlanFormatDetect(rxSIGA,lltfChanEst,noiseVar,chanBW);
fprintf(' %s packet detected\n\n',pktFormat);

% Set the packet format in the recovery object and update the field indices
cfgRx.PacketFormat = pktFormat;
ind = wlanFieldIndices(cfgRx);

Detect packet format...
 HE-MU packet detected

L-LTF Channel Estimate

Demodulate the L-LTF and perform channel estimation. The demodulated L-LTF symbols include tone
rotation for each 20 MHz segment as described in [2], section 21.3.7.5. The L-LTF channel estimates
(with tone rotation) are used to equalize and decode the pre-HE-LTF fields.

lltfDemod = wlanHEDemodulate(rxLLTF,'L-LTF',chanBW);
lltfChanEst = wlanLLTFChannelEstimate(lltfDemod,chanBW);

4 Signal Reception

4-16

L-SIG and RL-SIG Decoding

The L-SIG field is used to determine the receive time, or RXTIME, of the packet. The RXTIME is
calculated using the length bits of the L-SIG payload. The L-SIG and RL-SIG fields are recovered to
perform the channel estimate on the extra subcarriers in the L-SIG and RL-SIG fields. The
lltfChanEst channel estimates are updated to include the channel estimates on extra subcarriers
in the L-SIG and RL-SIG fields. The L-SIG payload is decoded using an estimate of the channel and
noise power obtained from the L-LTF field. The L-SIG length property in wlanHERecoveryConfig is
updated after L-SIG decoding.

disp('Decoding L-SIG... ');
% Extract L-SIG and RL-SIG fields
rxLSIG = rx(pktOffset+(ind.LSIG(1):ind.RLSIG(2)),:);

% OFDM demodulate
helsigDemod = wlanHEDemodulate(rxLSIG,'L-SIG',chanBW);

% Estimate CPE and phase correct symbols
helsigDemod = preHECommonPhaseErrorTracking(helsigDemod,lltfChanEst,'L-SIG',chanBW);

% Estimate channel on extra 4 subcarriers per subchannel and create full
% channel estimate
preheInfo = wlanHEOFDMInfo('L-SIG',chanBW);
preHEChanEst = preHEChannelEstimate(helsigDemod,lltfChanEst,preheInfo.NumSubchannels);

% Average L-SIG and RL-SIG before equalization
helsigDemod = mean(helsigDemod,2);

% Equalize data carrying subcarriers, merging 20 MHz subchannels
[eqLSIGSym,csi] = preHESymbolEqualize(helsigDemod(preheInfo.DataIndices,:,:), ...
 preHEChanEst(preheInfo.DataIndices,:,:),noiseVar,preheInfo.NumSubchannels);

% Decode L-SIG field
[~,failCheck,lsigInfo] = wlanLSIGBitRecover(eqLSIGSym,noiseVar,csi);

if failCheck
 disp(' ** L-SIG check fail **');
else
 disp(' L-SIG check pass');
end
% Get the length information from the recovered L-SIG bits and update the
% L-SIG length property of the recovery configuration object
lsigLength = lsigInfo.Length;
cfgRx.LSIGLength = lsigLength;

% Measure EVM of L-SIG symbols
EVM = comm.EVM;
EVM.ReferenceSignalSource = 'Estimated from reference constellation';
EVM.Normalization = 'Average constellation power';
EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK');
rmsEVM = EVM(eqLSIGSym);
fprintf(' L-SIG EVM: %2.2fdB\n\n',20*log10(rmsEVM/100));

% Calculate the receive time and corresponding number of samples in the
% packet
RXTime = ceil((lsigLength + 3)/3) * 4 + 20; % In microseconds
numRxSamples = round(RXTime * 1e-6 * sr); % Number of samples in time

 Recovery Procedure for an 802.11ax Packet

4-17

fprintf(' RXTIME: %dus\n',RXTime);
fprintf(' Number of samples in the packet: %d\n\n',numRxSamples);

Decoding L-SIG...
 L-SIG check pass
 L-SIG EVM: -36.91dB

 RXTIME: 536us
 Number of samples in the packet: 10720

The waveform and spectrum of the detected packet within rx is displayed given the calculated
RXTIME and corresponding number of samples.

sampleOffset = max((-lstfLength + pktOffset),1); % First index to plot
sampleSpan = numRxSamples + 2*lstfLength; % Number samples to plot
% Plot as much of the packet (and extra samples) as we can
plotIdx = sampleOffset:min(sampleOffset + sampleSpan,rxWaveLen);

% Configure timeScope to display the packet
timeScope.TimeSpan = sampleSpan/sr;
timeScope.TimeDisplayOffset = sampleOffset/sr;
timeScope.YLimits = [0 max(abs(rx(:)))];
timeScope(abs(rx(plotIdx,:)));
release(timeScope);

% Display the spectrum of the detected packet
spectrumAnalyzer(rx(pktOffset + (1:numRxSamples),:));
release(spectrumAnalyzer);

4 Signal Reception

4-18

 Recovery Procedure for an 802.11ax Packet

4-19

HE-SIG-A Decoding

The HE-SIG-A field contains the transmission configuration of an HE packet. An estimate of the
channel and noise power obtained from the L-LTF is required to decode the HE-SIG-A field.

disp('Decoding HE-SIG-A...')
rxSIGA = rx(pktOffset+(ind.HESIGA(1):ind.HESIGA(2)),:);
sigaDemod = wlanHEDemodulate(rxSIGA,'HE-SIG-A',chanBW);
hesigaDemod = preHECommonPhaseErrorTracking(sigaDemod,preHEChanEst,'HE-SIG-A',chanBW);

% Equalize data carrying subcarriers, merging 20 MHz subchannels
preheInfo = wlanHEOFDMInfo('HE-SIG-A',chanBW);
[eqSIGASym,csi] = preHESymbolEqualize(hesigaDemod(preheInfo.DataIndices,:,:), ...
 preHEChanEst(preheInfo.DataIndices,:,:), ...
 noiseVar,preheInfo.NumSubchannels);
% Recover HE-SIG-A bits
[sigaBits,failCRC] = wlanHESIGABitRecover(eqSIGASym,noiseVar,csi);

% Perform the CRC on HE-SIG-A bits
if failCRC
 disp(' ** HE-SIG-A CRC fail **');
else
 disp(' HE-SIG-A CRC pass');
end

4 Signal Reception

4-20

% Measure EVM of HE-SIG-A symbols
release(EVM);
if strcmp(pktFormat,'HE-EXT-SU')
 % The second symbol of an HE-SIG-A field for an HE-EXT-SU packet is
 % QBPSK.
 EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK',[0 pi/2 0 0]);
 % Account for scaling of L-LTF for an HE-EXT-SU packet
 rmsEVM = EVM(eqSIGASym*sqrt(2));
else
 EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK');
 rmsEVM = EVM(eqSIGASym);
end
fprintf(' HE-SIG-A EVM: %2.2fdB\n\n',20*log10(mean(rmsEVM)/100));

Decoding HE-SIG-A...
 HE-SIG-A CRC pass
 HE-SIG-A EVM: -35.17dB

Interpret Recovered HE-SIG-A bits

The wlanHERecoveryConfig object is updated after interpreting the recovered HE-SIG-A bits.

cfgRx = interpretHESIGABits(cfgRx,sigaBits);
ind = wlanFieldIndices(cfgRx); % Update field indices

Display the common transmission configuration obtained from HE-SIG-A field for an HE-MU packet.
The properties indicated by -1 are unknown or undefined. The unknown user-related properties are
updated after successful decoding of the HE-SIG-B field.

disp(cfgRx)

 wlanHERecoveryConfig with properties:

 PacketFormat: 'HE-MU'
 ChannelBandwidth: 'CBW20'
 LSIGLength: 383
 SIGBCompression: 0
 SIGBMCS: 0
 SIGBDCM: 0
 NumSIGBSymbolsSignaled: 5
 STBC: 0
 LDPCExtraSymbol: 0
 PreFECPaddingFactor: 4
 PEDisambiguity: 0
 GuardInterval: 3.2000
 HELTFType: 4
 NumHELTFSymbols: 2
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0
 AllocationIndex: -1
 NumUsersPerContentChannel: -1
 RUTotalSpaceTimeStreams: -1
 RUSize: -1
 RUIndex: -1

 Recovery Procedure for an 802.11ax Packet

4-21

 STAID: -1
 MCS: -1
 DCM: -1
 ChannelCoding: 'Unknown'
 Beamforming: -1
 NumSpaceTimeStreams: -1
 SpaceTimeStreamStartingIndex: -1

HE-SIG-B Decoding

For an HE-MU packet the HE-SIG-B field contains:

• The RU allocation information for a non-compressed SIGB waveform is inferred from HE-SIG-B
Common field [1 Table. 27-23]. For a compressed SIGB waveform the RU allocation information is
inferred from the recovered HE-SIG-A bits.

• For a non-compressed SIGB waveform the number of HE-SIG-B symbols are updated in the
wlanHERecoveryConfig object. The symbols are only updated if the number of HE-SIG-B symbols
indicated in the HE-SIG-A field is set to 15 and all content channels pass the CRC. The number of
HE-SIG-B symbols indicated in the HE-SIG-A field are not updated if any HE-SIG-B content
channel fails the CRC.

• The user transmission parameters for both SIGB compressed and non-compressed waveforms are
inferred from the HE-SIG-B user field [1 Table. 27-25, 27-26].

An estimate of the channel and noise power obtained from the L-LTF is required to decode the HE-
SIG-B field.

if strcmp(pktFormat,'HE-MU')
 fprintf('Decoding HE-SIG-B...\n');
 if ~cfgRx.SIGBCompression
 fprintf(' Decoding HE-SIG-B common field...\n');
 s = getSIGBLength(cfgRx);
 % Get common field symbols. The start of HE-SIG-B field is known
 rxSym = rx(pktOffset+(ind.HESIGA(2)+(1:s.NumSIGBCommonFieldSamples)),:);
 % Decode HE-SIG-B common field
 [status,cfgRx] = heSIGBCommonFieldDecode(rxSym,preHEChanEst,noiseVar,cfgRx);

 % CRC on HE-SIG-B content channels
 if strcmp(status,'Success')
 fprintf(' HE-SIG-B (common field) CRC pass\n');
 elseif strcmp(status,'ContentChannel1CRCFail')
 fprintf(' ** HE-SIG-B CRC fail for content channel-1\n **');
 elseif strcmp(status,'ContentChannel2CRCFail')
 fprintf(' ** HE-SIG-B CRC fail for content channel-2\n **');
 elseif any(strcmp(status,{'UnknownNumUsersContentChannel1','UnknownNumUsersContentChannel2'}))
 error(' ** Unknown packet length, discard packet\n **');
 else
 % Discard the packet if all HE-SIG-B content channels fail
 error(' ** HE-SIG-B CRC fail **');
 end
 % Update field indices as the number of HE-SIG-B symbols are
 % updated
 ind = wlanFieldIndices(cfgRx);
 end

 % Get complete HE-SIG-B field samples

4 Signal Reception

4-22

 rxSIGB = rx(pktOffset+(ind.HESIGB(1):ind.HESIGB(2)),:);
 fprintf(' Decoding HE-SIG-B user field... \n');
 % Decode HE-SIG-B user field
 [failCRC,cfgUsers] = heSIGBUserFieldDecode(rxSIGB,preHEChanEst,noiseVar,cfgRx);

 % CRC on HE-SIG-B users
 if ~all(failCRC)
 fprintf(' HE-SIG-B (user field) CRC pass\n\n');
 numUsers = numel(cfgUsers);
 elseif all(failCRC)
 % Discard the packet if all users fail the CRC
 error(' ** HE-SIG-B CRC fail for all users **');
 else
 fprintf(' ** HE-SIG-B CRC fail for at least one user\n **');
 % Only process users with valid CRC
 numUsers = numel(cfgUsers);
 end

else % HE-SU, HE-EXT-SU
 cfgUsers = {cfgRx};
 numUsers = 1;
end

Decoding HE-SIG-B...
 Decoding HE-SIG-B common field...
 HE-SIG-B (common field) CRC pass
 Decoding HE-SIG-B user field...
 HE-SIG-B (user field) CRC pass

HE-Data Decoding

The updated wlanHERecoveryConfig object for each user can then be used to recover the PSDU bits
for each user in the HE-Data field.

cfgDataRec = trackingRecoveryConfig;
cfgDataRec.PilotTracking = pilotTracking;

fprintf('Decoding HE-Data...\n');
for iu = 1:numUsers
 % Get recovery configuration object for each user
 user = cfgUsers{iu};
 if strcmp(pktFormat,'HE-MU')
 fprintf(' Decoding User:%d, STAID:%d, RUSize:%d\n',iu,user.STAID,user.RUSize);
 else
 fprintf(' Decoding RUSize:%d\n',user.RUSize);
 end

 heInfo = wlanHEOFDMInfo('HE-Data',chanBW,user.GuardInterval,[user.RUSize user.RUIndex]);

 % HE-LTF demodulation and channel estimation
 rxHELTF = rx(pktOffset+(ind.HELTF(1):ind.HELTF(2)),:);
 heltfDemod = wlanHEDemodulate(rxHELTF,'HE-LTF',chanBW,user.GuardInterval, ...
 user.HELTFType,[user.RUSize user.RUIndex]);
 [chanEst,pilotEst] = heLTFChannelEstimate(heltfDemod,user);

 % Number of expected data OFDM symbols
 symLen = heInfo.FFTLength+heInfo.CPLength;

 Recovery Procedure for an 802.11ax Packet

4-23

 numOFDMSym = (ind.HEData(2)-ind.HEData(1)+1)/symLen;

 % HE-Data demodulation with pilot phase and timing tracking
 % Account for extra samples when extracting data field from the packet
 % for sample rate offset tracking. Extra samples may be required if the
 % receiver clock is significantly faster than the transmitter.
 maxSRO = 120; % Parts per million
 Ne = ceil(numRxSamples*maxSRO*1e-6); % Number of extra samples
 Ne = min(Ne,rxWaveLen-numRxSamples); % Limited to length of waveform
 numRxSamplesProcess = numRxSamples+Ne;
 rxData = rx(pktOffset+(ind.HEData(1):numRxSamplesProcess),:);
 if user.RUSize==26
 % Force CPE only tracking for 26-tone RU as algorithm susceptible
 % to noise
 cfgDataRec.PilotTracking = 'CPE';
 else
 cfgDataRec.PilotTracking = pilotTracking;
 end
 [demodSym,cpe,peg] = heTrackingOFDMDemodulate(rxData,chanEst,numOFDMSym,user,cfgDataRec);

 % Estimate noise power in HE fields
 demodPilotSym = demodSym(heInfo.PilotIndices,:,:);
 nVarEst = heNoiseEstimate(demodPilotSym,pilotEst,user);

 % Equalize
 [eqSym,csi] = heEqualizeCombine(demodSym,chanEst,nVarEst,user);

 % Discard pilot subcarriers
 eqSymUser = eqSym(heInfo.DataIndices,:,:);
 csiData = csi(heInfo.DataIndices,:);

 % Demap and decode bits
 rxPSDU = wlanHEDataBitRecover(eqSymUser,nVarEst,csiData,user,'LDPCDecodingMethod','layered-bp');

 % Deaggregate the A-MPDU
 [mpduList,~,status] = wlanAMPDUDeaggregate(rxPSDU,wlanHESUConfig);
 if strcmp(status,'Success')
 fprintf(' A-MPDU deaggregation successful \n');
 else
 fprintf(' A-MPDU deaggregation unsuccessful \n');
 end

 % Decode the list of MPDUs and check the FCS for each MPDU
 for i = 1:numel(mpduList)
 [~,~,status] = wlanMPDUDecode(mpduList{i},wlanHESUConfig,'DataFormat','octets');
 if strcmp(status,'Success')
 fprintf(' FCS pass for MPDU:%d\n',i);
 else
 fprintf(' FCS fail for MPDU:%d\n',i);
 end
 end

 % Plot equalized constellation of the recovered HE data symbols for all
 % spatial streams per user
 hePlotEQConstellation(eqSymUser,user,ConstellationDiagram,iu,numUsers);

 % Measure EVM of HE-Data symbols
 release(EVM);

4 Signal Reception

4-24

 EVM.ReferenceConstellation = wlanReferenceSymbols(user);
 rmsEVM = EVM(eqSymUser(:));
 fprintf(' HE-Data EVM:%2.2fdB\n\n',20*log10(rmsEVM/100));

 % Plot EVM per symbol of the recovered HE data symbols
 hePlotEVMPerSymbol(eqSymUser,user,EVMPerSymbol,iu,numUsers);

 % Plot EVM per subcarrier of the recovered HE data symbols
 hePlotEVMPerSubcarrier(eqSymUser,user,EVMPerSubcarrier,iu,numUsers);
end

Decoding HE-Data...
 Decoding User:1, STAID:1, RUSize:52
 A-MPDU deaggregation successful
 FCS pass for MPDU:1
 HE-Data EVM:-28.61dB

 Decoding User:2, STAID:2, RUSize:52
 A-MPDU deaggregation successful
 FCS pass for MPDU:1
 HE-Data EVM:-39.94dB

 Decoding User:3, STAID:3, RUSize:106
 A-MPDU deaggregation successful
 FCS pass for MPDU:1
 HE-Data EVM:-28.22dB

 Decoding User:4, STAID:4, RUSize:106
 A-MPDU deaggregation successful
 FCS pass for MPDU:1
 HE-Data EVM:-31.44dB

 Recovery Procedure for an 802.11ax Packet

4-25

4 Signal Reception

4-26

 Recovery Procedure for an 802.11ax Packet

4-27

Appendix

This example uses the following helper functions:

• heCommonPhaseErrorTracking.m
• heCPECorrection.m
• heEqualizeCombine.m
• helperFrequencyOffset.m
• helperNoiseEstimate.m
• helperPlotPositions.m
• helperSymbolEqualize.m
• heLTFChannelEstimate.m
• heNoiseEstimate.m

4 Signal Reception

4-28

• hePlotEQConstellation.m
• hePlotEVMPerSubcarrier.m
• hePlotEVMPerSymbol.m
• heSigRecSetupPlots.m
• heSigRecGenerateWaveform.m
• heSIGBCommonFieldDecode.m
• heSIGBMergeSubchannels.m
• heSIGBUserFieldDecode.m
• heTrackingOFDMDemodulate.m
• preHEChannelEstimate.m
• preHESymbolEqualize.m
• trackingRecoveryConfig.m

Selected Bibliography

1 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

2 IEEE Std 802.11™-2016 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

 Recovery Procedure for an 802.11ax Packet

4-29

Recovery Procedure for an 802.11ac Packet
This example shows how to detect a packet and decode payload bits in a received IEEE® 802.11ac™
VHT waveform. The receiver recovers the packet format parameters from the preamble fields to
decode the data.

Introduction

In a single-user 802.11ac packet the transmission parameters are signaled to the receiver using the
L-SIG and VHT-SIG-A preamble fields [1]:

• The L-SIG field contains information to allow the receiver to determine the transmission time of a
packet.

• The VHT-SIG-A field contains the transmission parameters including the modulation and coding
scheme, number of space-time streams and channel coding.

In this example we detect and decode a packet within a generated waveform containing a valid MAC
frame with frame check sequence (FCS). All transmission parameters apart from the channel
bandwidth are assumed unknown and are therefore retrieved from the decoded L-SIG and VHT-SIG-A
preamble fields in each packet. The retrieved transmission configuration is used to decode the VHT-
SIG-B and VHT Data fields. Additionally the following analysis is performed:

• The waveform of the detected packet is displayed.
• The spectrum of the detected packet is displayed.
• The constellation of the equalized data symbols per spatial stream is displayed.
• The error vector magnitude (EVM) of each field is measured.

Waveform Transmission

In this example an 802.11ac VHT single-user waveform is generated locally but a captured waveform
could be used. MATLAB® can be used to acquire I/Q data from a wide range of instruments using the
Instrument Control Toolbox™ and software defined radio platforms.

The locally generated waveform is impaired by a 3x3 TGac fading channel, additive white Gaussian
noise, and carrier frequency offset. To generate a waveform locally we configure a VHT packet format
configuration object. Note that the VHT packet configuration object is used at the transmitter side
only. The receiver will dynamically formulate another VHT configuration object when the packet is
decoded. The helper function vhtSigRecGenerateWaveform generates the impaired waveform locally.
The processing steps within the helper function are:

• A valid MAC frame is generated and encoded into a VHT waveform.
• The waveform is passed through a TGac fading channel model.
• Carrier frequency offset is added to the waveform.
• Additive white Gaussian noise is added to the waveform.

% VHT link parameters
cfgVHTTx = wlanVHTConfig(...
 'ChannelBandwidth', 'CBW80', ...
 'NumTransmitAntennas', 3, ...
 'NumSpaceTimeStreams', 2, ...
 'SpatialMapping', 'Hadamard', ...
 'STBC', true, ...

4 Signal Reception

4-30

 'MCS', 5, ...
 'GuardInterval', 'Long', ...
 'APEPLength', 1052);

% Propagation channel
numRx = 3; % Number of receive antennas
delayProfile = 'Model-C'; % TGac channel delay profile

% Impairments
noisePower = -30; % Noise power to apply in dBW
cfo = 62e3; % Carrier frequency offset (Hz)

% Generated waveform parameters
numTxPkt = 1; % Number of transmitted packets
idleTime = 20e-6; % Idle time before and after each packet

% Generate waveform
rx = vhtSigRecGenerateWaveform(cfgVHTTx, numRx, ...
 delayProfile, noisePower, cfo, numTxPkt, idleTime);

Packet Recovery

The signal to process is stored in the variable rx. The processing steps to recover a packet are:

• The packet is detected and synchronized.
• The format of the packet is detected.
• The L-SIG field is extracted and its information bits are recovered to determine the length of the

packet in microseconds.
• The VHT-SIG-A field is extracted and its information bits are recovered.
• The packet format parameters are retrieved from the decoded L-SIG and VHT-SIG-A bits.
• The VHT-LTF field is extracted to perform MIMO channel estimation for decoding the VHT-SIG-B

and VHT Data fields.
• The VHT-SIG-B field is extracted and its information bits recovered.
• The VHT-Data field is extracted and the PSDU and VHT-SIG-B CRC bits recovered using the

retrieved packet parameters.

The start and end indices for some preamble fields depend on the channel bandwidth, but are
independent of all other transmission parameters. These indices are calculated using a default
transmission configuration object with the known bandwidth.

cfgVHTRx = wlanVHTConfig('ChannelBandwidth', cfgVHTTx.ChannelBandwidth);
idxLSTF = wlanFieldIndices(cfgVHTRx, 'L-STF');
idxLLTF = wlanFieldIndices(cfgVHTRx, 'L-LTF');
idxLSIG = wlanFieldIndices(cfgVHTRx, 'L-SIG');
idxSIGA = wlanFieldIndices(cfgVHTRx, 'VHT-SIG-A');

The following code configures objects and variables for processing.

chanBW = cfgVHTTx.ChannelBandwidth;
sr = wlanSampleRate(cfgVHTTx);

% Setup plots for example
[spectrumAnalyzer, timeScope, constellationDiagram] = vhtSigRecSetupPlots(sr);

 Recovery Procedure for an 802.11ac Packet

4-31

% Minimum packet length is 10 OFDM symbols
lstfLen = double(idxLSTF(2)); % Number of samples in L-STF
minPktLen = lstfLen*5;

rxWaveLen = size(rx, 1);

Front-End Processing

The front-end processing consists of packet detection, coarse carrier frequency offset correction,
timing synchronization and fine carrier frequency offset correction. A while loop is used to detect
and synchronize a packet within the received waveform. The sample offset searchOffset is used to
index elements within the array rx to detect a packet. The first packet within rx is detected and
processed. If the synchronization fails for the detected packet, the sample index offset
searchOffset is incremented to move beyond the processed packet in rx. This is repeated until a
packet has been successfully detected and synchronized.

searchOffset = 0; % Offset from start of waveform in samples
while (searchOffset + minPktLen) <= rxWaveLen
 % Packet detection
 pktOffset = wlanPacketDetect(rx, chanBW, searchOffset);

 % Adjust packet offset
 pktOffset = searchOffset + pktOffset;
 if isempty(pktOffset) || (pktOffset + idxLSIG(2) > rxWaveLen)
 error('** No packet detected **');
 end

 % Coarse frequency offset estimation using L-STF
 LSTF = rx(pktOffset + (idxLSTF(1):idxLSTF(2)), :);
 coarseFreqOffset = wlanCoarseCFOEstimate(LSTF, chanBW);

 % Coarse frequency offset compensation
 rx = helperFrequencyOffset(rx,sr,-coarseFreqOffset);

 % Symbol timing synchronization
 LLTFSearchBuffer = rx(pktOffset+(idxLSTF(1):idxLSIG(2)),:);
 pktOffset = pktOffset+wlanSymbolTimingEstimate(LLTFSearchBuffer,chanBW);
 if (pktOffset + minPktLen) > rxWaveLen
 fprintf('** Not enough samples to recover packet **\n\n');
 break;
 end

 % Timing synchronization complete: packet detected
 fprintf('Packet detected at index %d\n\n', pktOffset + 1);

 % Fine frequency offset estimation using L-LTF
 LLTF = rx(pktOffset + (idxLLTF(1):idxLLTF(2)), :);
 fineFreqOffset = wlanFineCFOEstimate(LLTF, chanBW);

 % Fine frequency offset compensation
 rx = helperFrequencyOffset(rx, sr, -fineFreqOffset);

 % Display estimated carrier frequency offset
 cfoCorrection = coarseFreqOffset + fineFreqOffset; % Total CFO
 fprintf('Estimated CFO: %5.1f Hz\n\n', cfoCorrection);

4 Signal Reception

4-32

 break; % Front-end processing complete, stop searching for a packet
end

Packet detected at index 1600

Estimated CFO: 61954.3 Hz

Format Detection

The format of the packet is detected using the three OFDM symbols immediately following the L-LTF.
An estimate of the channel and noise power obtained from the L-LTF is required.

% Channel estimation using L-LTF
LLTF = rx(pktOffset + (idxLLTF(1):idxLLTF(2)), :);
demodLLTF = wlanLLTFDemodulate(LLTF, chanBW);
chanEstLLTF = wlanLLTFChannelEstimate(demodLLTF, chanBW);

% Estimate noise power in non-HT fields
noiseVarNonHT = helperNoiseEstimate(demodLLTF);

% Detect the format of the packet
fmt = wlanFormatDetect(rx(pktOffset + (idxLSIG(1):idxSIGA(2)), :), ...
 chanEstLLTF, noiseVarNonHT, chanBW);
disp([fmt ' format detected']);
if ~strcmp(fmt,'VHT')
 error('** A format other than VHT has been detected **');
end

VHT format detected

L-SIG Decoding

In a VHT transmission the L-SIG field is used to determine the receive time, or RXTIME, of the
packet. RXTIME is calculated using the field bits of the L-SIG payload [1 Eq. 22-105]. The number of
samples which contain the packet within rx can then be calculated. The L-SIG payload is decoded
using an estimate of the channel and noise power obtained from the L-LTF.

% Recover L-SIG field bits
disp('Decoding L-SIG... ');
[rxLSIGBits, failCheck, eqLSIGSym] = wlanLSIGRecover(rx(pktOffset + (idxLSIG(1):idxLSIG(2)), :), ...
 chanEstLLTF, noiseVarNonHT, chanBW);

if failCheck % Skip L-STF length of samples and continue searching
 disp('** L-SIG check fail **');
else
 disp('L-SIG check pass');
end

% Measure EVM of L-SIG symbol
EVM = comm.EVM;
EVM.ReferenceSignalSource = 'Estimated from reference constellation';
EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK');
rmsEVM = EVM(eqLSIGSym);
fprintf('L-SIG EVM: %2.2f%% RMS\n', rmsEVM);

% Calculate the receive time and corresponding number of samples in the
% packet

 Recovery Procedure for an 802.11ac Packet

4-33

lengthBits = rxLSIGBits(6:17).';
RXTime = ceil((bi2de(double(lengthBits)) + 3)/3) * 4 + 20; % us
numRxSamples = RXTime * 1e-6 * sr; % Number of samples in receive time

fprintf('RXTIME: %dus\n', RXTime);
fprintf('Number of samples in packet: %d\n\n', numRxSamples);

Decoding L-SIG...
L-SIG check pass
L-SIG EVM: 1.83% RMS
RXTIME: 84us
Number of samples in packet: 6720

The waveform and spectrum of the detected packet within rx are displayed for the calculated
RXTIME and corresponding number of samples.

sampleOffset = max((-lstfLen + pktOffset), 1); % First index to plot
sampleSpan = numRxSamples + 2*lstfLen; % Number of samples to plot
% Plot as much of the packet (and extra samples) as we can
plotIdx = sampleOffset:min(sampleOffset + sampleSpan, rxWaveLen);

% Configure timeScope to display the packet
timeScope.TimeSpan = sampleSpan/sr;
timeScope.TimeDisplayOffset = sampleOffset/sr;
timeScope.YLimits = [0 max(abs(rx(:)))];
timeScope(abs(rx(plotIdx ,:)));

% Display the spectrum of the detected packet
spectrumAnalyzer(rx(pktOffset + (1:numRxSamples), :));

4 Signal Reception

4-34

 Recovery Procedure for an 802.11ac Packet

4-35

VHT-SIG-A Decoding

The VHT-SIG-A field contains the transmission configuration of the packet. The VHT-SIG-A bits are
recovered using the channel and noise power estimates obtained from the L-LTF.

% Recover VHT-SIG-A field bits
disp('Decoding VHT-SIG-A... ');
[rxSIGABits, failCRC, eqSIGASym] = wlanVHTSIGARecover(rx(pktOffset + (idxSIGA(1):idxSIGA(2)), :), ...
 chanEstLLTF, noiseVarNonHT, chanBW);

if failCRC
 disp('** VHT-SIG-A CRC fail **');
else
 disp('VHT-SIG-A CRC pass');
end

% Measure EVM of VHT-SIG-A symbols for BPSK and QBPSK modulation schemes
release(EVM);
EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK');
rmsEVMSym1 = EVM(eqSIGASym(:,1));
release(EVM);
EVM.ReferenceConstellation = wlanReferenceSymbols('QBPSK');
rmsEVMSym2 = EVM(eqSIGASym(:,2));
fprintf('VHT-SIG-A EVM: %2.2f%% RMS\n', mean([rmsEVMSym1 rmsEVMSym2]));

4 Signal Reception

4-36

Decoding VHT-SIG-A...
VHT-SIG-A CRC pass
VHT-SIG-A EVM: 2.06% RMS

The helper function helperVHTConfigRecover returns a VHT format configuration object, cfgVHTRx,
based on recovered VHT-SIG-A and L-SIG bits. Properties that are not required to decode the
waveform are set to default values for a wlanVHTConfig object and therefore may differ from the
value in cfgVHTTx. Examples of such properties include NumTransmitAntennas and
SpatialMapping.

% Create a VHT format configuration object by retrieving packet parameters
% from the decoded L-SIG and VHT-SIG-A bits
cfgVHTRx = helperVHTConfigRecover(rxLSIGBits, rxSIGABits);

% Display the transmission configuration obtained from VHT-SIG-A
vhtSigRecDisplaySIGAInfo(cfgVHTRx);

 Decoded VHT-SIG-A contents:
 ChannelBandwidth: 'CBW80'
 NumSpaceTimeStreams: 2
 STBC: 1
 MCS: 5
 ChannelCoding: {'BCC'}
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275
 Beamforming: 0
 PSDULength: 1167

The information provided by VHT-SIG-A allows the location of subsequent fields within the received
waveform to be calculated.

% Obtain starting and ending indices for VHT-LTF and VHT-Data fields
% using retrieved packet parameters
idxVHTLTF = wlanFieldIndices(cfgVHTRx, 'VHT-LTF');
idxVHTSIGB = wlanFieldIndices(cfgVHTRx, 'VHT-SIG-B');
idxVHTData = wlanFieldIndices(cfgVHTRx, 'VHT-Data');

% Warn if waveform does not contain whole packet
if (pktOffset + double(idxVHTData(2))) > rxWaveLen
 fprintf('** Not enough samples to recover entire packet **\n\n');
end

VHT-SIG-B Decoding

The primary use of VHT-SIG-B is for signaling user information in a multi-user packet. In a single-user
packet the VHT-SIG-B carries the length of the packet which can also be calculated using the L-SIG
and VHT-SIG-A (which is demonstrated in the sections above). Despite not being required to decode a
single-user packet, the VHT-SIG-B is recovered below and the bits interpreted. The VHT-SIG-B
symbols are demodulated using a MIMO channel estimate obtained from the VHT-LTF. Note the CRC
for VHT-SIG-B is carried in the VHT Data field.

% Estimate MIMO channel using VHT-LTF and retrieved packet parameters
demodVHTLTF = wlanVHTLTFDemodulate(rx(pktOffset + (idxVHTLTF(1):idxVHTLTF(2)), :), cfgVHTRx);
chanEstVHTLTF = wlanVHTLTFChannelEstimate(demodVHTLTF, cfgVHTRx);

% Estimate noise power in VHT-SIG-B fields

 Recovery Procedure for an 802.11ac Packet

4-37

noiseVarVHT = helperNoiseEstimate(demodLLTF, chanBW, cfgVHTRx.NumSpaceTimeStreams);

% VHT-SIG-B Recover
disp('Decoding VHT-SIG-B...');
[rxSIGBBits, eqSIGBSym] = wlanVHTSIGBRecover(rx(pktOffset + (idxVHTSIGB(1):idxVHTSIGB(2)),:), ...
 chanEstVHTLTF, noiseVarVHT, chanBW);

% Measure EVM of VHT-SIG-B symbol
release(EVM);
EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK');
rmsEVM = EVM(eqSIGBSym);
fprintf('VHT-SIG-B EVM: %2.2f%% RMS\n', rmsEVM);

% Interpret VHT-SIG-B bits to recover the APEP length (rounded up to a
% multiple of four bytes) and generate reference CRC bits
[refSIGBCRC, sigbAPEPLength] = helperInterpretSIGB(rxSIGBBits, chanBW, true);
disp('Decoded VHT-SIG-B contents: ');
fprintf(' APEP Length (rounded up to 4 byte multiple): %d bytes\n\n', sigbAPEPLength);

Decoding VHT-SIG-B...
VHT-SIG-B EVM: 5.21% RMS
Decoded VHT-SIG-B contents:
 APEP Length (rounded up to 4 byte multiple): 1052 bytes

VHT Data Decoding

The reconstructed VHT configuration object can then be used to recover the VHT Data field. This
includes the VHT-SIG-B CRC bits and PSDU.

The recovered VHT data symbols can then be analyzed as required. In this example the equalized
constellation of the recovered VHT data symbols per spatial stream are displayed.

% Get single stream channel estimate
chanEstSSPilots = vhtSingleStreamChannelEstimate(demodVHTLTF, cfgVHTRx);

% Extract VHT Data samples from the waveform
vhtdata = rx(pktOffset + (idxVHTData(1):idxVHTData(2)), :);

% Estimate the noise power in VHT data field
noiseVarVHT = vhtNoiseEstimate(vhtdata, chanEstSSPilots, cfgVHTRx);

% Recover PSDU bits using retrieved packet parameters and channel
% estimates from VHT-LTF
disp('Decoding VHT Data field...');
[rxPSDU, rxSIGBCRC, eqDataSym] = wlanVHTDataRecover(vhtdata, chanEstVHTLTF, noiseVarVHT, cfgVHTRx);

% Plot equalized constellation for each spatial stream
refConst = wlanReferenceSymbols(cfgVHTRx);
[Nsd, Nsym, Nss] = size(eqDataSym);
eqDataSymPerSS = reshape(eqDataSym, Nsd*Nsym, Nss);
for iss = 1:Nss
 constellationDiagram{iss}.ReferenceConstellation = refConst;
 constellationDiagram{iss}(eqDataSymPerSS(:, iss));
end

% Measure EVM of VHT-Data symbols
release(EVM);

4 Signal Reception

4-38

EVM.ReferenceConstellation = refConst;
rmsEVM = EVM(eqDataSym(:));
fprintf('VHT-Data EVM: %2.2f%% RMS\n', rmsEVM);

Decoding VHT Data field...
VHT-Data EVM: 4.68% RMS

The CRC bits for VHT-SIG-B recovered in VHT Data are then compared to the locally generated
reference to determine whether the VHT-SIG-B and VHT data service bits have been recovered
successfully.

% Test VHT-SIG-B CRC from service bits within VHT Data against
% reference calculated with VHT-SIG-B bits
if ~isequal(refSIGBCRC, rxSIGBCRC)
 disp('** VHT-SIG-B CRC fail **');
else
 disp('VHT-SIG-B CRC pass');
end

 Recovery Procedure for an 802.11ac Packet

4-39

VHT-SIG-B CRC pass

The FCS in the MAC frames can be validated using wlanMPDUDecode. As a VHT format frame is
recovered, the PSDU contains an A-MPDU. The MPDUs are extracted from the A-MPDU using
wlanAMPDUDeaggregate.

mpduList = wlanAMPDUDeaggregate(rxPSDU, cfgVHTRx);
fprintf('Number of MPDUs present in the A-MPDU: %d\n', numel(mpduList));

Number of MPDUs present in the A-MPDU: 1

The mpduList contains the de-aggregated list of MPDUs. Each MPDU in the list is passed to
wlanMPDUDecode which validates the FCS and decodes the MPDU.

for i = 1:numel(mpduList)
 [macCfg, payload, decodeStatus] = wlanMPDUDecode(mpduList{i}, cfgVHTRx, ...
 'DataFormat', 'octets');
 if strcmp(decodeStatus, 'FCSFailed')
 fprintf('** FCS failed for MPDU-%d **\n', i);
 else
 fprintf('FCS passed for MPDU-%d\n', i);
 end
end

FCS passed for MPDU-1

Appendix

This example uses the following helper functions:

• helperFrequencyOffset.m
• helperInterpretSIGB.m
• helperNoiseEstimate.m
• helperVHTConfigRecover.m
• vhtNoiseEstimate.m
• vhtSigRecDisplaySIGAInfo.m
• vhtSigRecGenerateWaveform.m
• vhtSigRecSetupPlots.m
• vhtSingleStreamChannelEstimate.m

Selected Bibliography

1 IEEE Std 802.11ac™-2013 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

4 Signal Reception

4-40

802.11 OFDM Beacon Receiver with Captured Data
This example shows a receiver design that is able to recover 802.11™ OFDM beacon packets in non-
HT format transmitted over the air from commercial 802.11 hardware. Beacon packets are typically
transmitted in non-HT format, even for HT [1], VHT [1], and/or HE [2] capable hardware. Packet
information such as SSID is printed to the command-line during recovery.

Introduction

This example illustrates the use of WLAN Toolbox™ to recover real-world signals. It demonstrates a
receiver design including synchronization, transmission configuration recovery, and payload decoding
for non-HT packets. The example recovers beacon packets from a file containing a captured baseband
waveform.

Beacon Packet Recovery

The following steps happen sequentially to recover one non-HT packet:

• Packet Detection: First a packet must be detected before any processing begins. This is
accomplished by auto-correlating input symbols. Since the front of each 802.11 OFDM packet
contains a repetitive structure called the L-STF, peaks will occur in the correlation when this
packet is present. The L-STF field is then extracted and used for coarse frequency estimation.

• Symbol Timing: Once a packet has been detected, future symbols will be collected and cross-
correlated to locate the L-LTF. The resulting correlation peaks provide an accurate timing
estimate. Once the full L-LTF is located, it is extracted and used for channel estimation and fine
frequency estimation.

• L-SIG Decoding: The first OFDM symbol after the L-LTF is the L-SIG field. This field must be
recovered and decoded to determine the modulation, code rate, and length of the following
payload. The information is used to capture the correct amount of data after the L-SIG for the
complete payload and to decode that information.

• Payload Decoding: All OFDM symbols after the L-SIG are buffered to a length determined by the
L-SIG field. After all the symbols have been captured they are demodulated and decoded into their
source bits. The source bits are then evaluated. This evaluation includes frame check sequence
(FCS) validation and extraction of the header and body. If the packet is of subtype beacon,
summary information such as SSID will be printed for the recovered packet.

Once a full packet is received or any failures occur during the processing chain, the receiver will
return to packet detection to search for more packets. This process is repeated for the duration of the
signal.

Streaming Process on Captured Data

In this example an off-the-air capture is processed to recover beacon frames. A Wi-Fi® signal was
captured using an RF interface with one receive antenna at a sampling rate of 20 Msps. The captured
waveform is stored in a binary baseband file. The file was created using
comm.BasebandFileWriter.

The captured waveform is processed in a streaming fashion. A block of samples is pulled in for
processing in each iteration. As many valid packets are retrieved as possible.
comm.BasebandFileReader is used to read blocks of samples from the binary baseband file.

% Create an object to stream the data from the file
basebandReader = comm.BasebandFileReader(...

 802.11 OFDM Beacon Receiver with Captured Data

4-41

 'Filename', 'nonHTBeaconRxData.bb', ...
 'SamplesPerFrame', 80); % Number of samples in 1 OFDM symbol at 20 MHz

The center frequency, sample rate and number of channels in the captured waveform are provided by
the comm.BasebandFileReader object.

disp(['Center frequency: ' num2str(basebandReader.CenterFrequency/1e6) ' MHz'])
disp(['Sample rate: ' num2str(basebandReader.SampleRate/1e6) ' Msps'])
disp(['Number of receive antennas: ' num2str(basebandReader.NumChannels) newline])

Center frequency: 5785 MHz
Sample rate: 20 Msps
Number of receive antennas: 1

A nonHTFrontEnd object performs front-end processing and L-SIG decoding. The object is configured
with a channel bandwidth of 20 MHz to process non-HT packets. Only one receive antenna is
supported.

rxFrontEnd = nonHTFrontEnd('ChannelBandwidth', 'CBW20');

A while loop is used to process blocks of samples and recover beacon packets until no more data is
available in the baseband file. In each iteration of the loop a block of samples is read from the
baseband file and is processed by rxFrontEnd. rxFrontEnd performs front-end processing and
buffers samples until a packet has been detected and the payload received. When payloadFull is
true, the full payload has been buffered and rxFrontEnd returns variables to allow the data within
the packet to be recovered:

• cfgNonHT contains the recovered packet parameters from L-SIG.
• rxNonHTData is the time-domain non-HT data field signal.
• chanEst contains the channel estimates obtained from the L-LTF.
• noiseVar is the fixed noise variance value.

The packet payload bits are recovered from the non-HT data field samples using
wlanNonHTDataRecover. The bits are then validated and decoded by wlanMPDUDecode to recover
the MAC frame parameters. wlanMPDUDecode returns the following outputs that determine whether
the received packet passed FCS check and whether the received packet is a beacon frame.

• mpduCfg is an object of type wlanMACFrameConfig containing the recovered MAC frame
parameters from the beacon frame.

• status is an enumeration of type “status” which is returned as 'Success' when MPDU passes FCS
check and returned as 'FCSFailed' when the MPDU fails FCS check.

If a valid beacon is detected, the decoded SSID is displayed.

% Symbol-by-symbol streaming process
numValidPackets = 0;
while ~isDone(basebandReader)
 % Pull in one OFDM symbol, i.e. 80 samples
 data = basebandReader();

 % Perform front-end processing and payload buffering
 [payloadFull, cfgNonHT, rxNonHTData, chanEst, noiseVar] = ...
 rxFrontEnd(data);

4 Signal Reception

4-42

 if payloadFull
 % Recover payload bits with zero-forcing equalization
 recBits = wlanNonHTDataRecover(rxNonHTData, chanEst, ...
 noiseVar, cfgNonHT, 'EqualizationMethod', 'ZF');

 % Decode and evaluate recovered bits
 [mpduCfg, ~, status] = wlanMPDUDecode(recBits, cfgNonHT);
 if strcmp(status, 'Success') && strcmp(mpduCfg.FrameType, 'Beacon')
 frameBody = mpduCfg.ManagementConfig; % Display SSID
 disp(['SSID: ', frameBody.SSID])
 numValidPackets = numValidPackets + 1;
 end
 end
end

disp([num2str(numValidPackets), ' Valid Beacon Packets Found'])

release(basebandReader);
release(rxFrontEnd);

SSID: MathWorks-SDR
SSID: MathWorks-SDR
SSID: MathWorks-SDR
3 Valid Beacon Packets Found

Further Exploration

See “802.11 OFDM Beacon Receiver with USRP® Hardware” on page 10-3 for an example of
processing live signals with USRP.

Appendix

This example uses the following helper functions and objects:

• nonHTFrontEnd.m

Selected Bibliography

1 IEEE® Std 802.11™-2016 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems Local and metropolitan area networks - Specific
requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

 802.11 OFDM Beacon Receiver with Captured Data

4-43

Joint Sampling Rate and Carrier Frequency Offset Tracking
This example demonstrates joint sampling rate and carrier frequency offset tracking in a WLAN
receiver.

Introduction

In a WLAN radio a single oscillator is typically used to derive clocks for sampling and modulation.
The oscillators in the transmitter and receiver radios do not run at the exact same frequency. Due to
this mismatch, the sampling instants at the receiver shift relative to the transmitter. Therefore, a
sample rate offset (SRO) exists between receiver and transmitter. Similarly, a carrier frequency offset
(CFO) exists between the receiver and transmitter due to mismatched carrier frequencies. The
inclusion of pilot subcarriers in the IEEE® 802.11™ standard allows for tracking and correction of
SRO and CFO impairments.

In OFDM systems SRO manifests itself as a subcarrier and symbol dependent phase rotation and
inter-carrier interference (ICI) [1]. When the SRO is large, and a packet is long, subcarriers far away
from DC will experience a substantial impairment. CFO manifests itself as ICI and a symbol
dependent phase rotation common to all subcarriers. The phase rotation on subcarriers from one
OFDM symbol to the next due to these impairments is illustrated below. is the phase error, is the
subcarrier index, is the number of subcarriers. is the SRO, is the carrier frequency offset,
is the period of the symbol, is the phase error gradient (PEG), and is the common phase error
(CPE). The PEG and CPE can be used to estimate SRO and residual CFO.

In this example, an IEEE 802.11ac™ VHT waveform is generated with fixed SRO and CFO
impairments [2]. The impaired waveform is synchronized and the data portion demodulated and
decoded with and without joint timing and phase tracking to correct for SRO and CFO. The equalized
constellation with and without tracking is shown to demonstrate the effectiveness of tracking.

Generate a Baseband Waveform

A VHT configuration object is created to parameterize the transmission. Because the impairments are
easier to visualize with fewer OFDM symbols, a data payload with only 500 bytes is transmitted using
16-QAM modulation.

% Create a VHT configuration
cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW20';
cfgVHT.NumTransmitAntennas = 1;
cfgVHT.NumSpaceTimeStreams = 1;
cfgVHT.MCS = 4; % 16-QAM and 3/4 coding rate
cfgVHT.APEPLength = 500; % Bytes

% Create a random PSDU

4 Signal Reception

4-44

s = rng(10); % Seed the random number generator
psdu = randi([0 1],cfgVHT.PSDULength*8,1,'int8');

% Generate a VHT packet
tx = wlanWaveformGenerator(psdu,cfgVHT);

Model Impairments

Sample rate offset between the transmitter and receiver is modeled by resampling the transmitted
waveform. The resample function can be used to model a limited range of large sample rate offsets.
In this example a -100 parts per million (PPM) sample rate offset is modeled.

% Model sample rate offset
p = 1e4; % Interpolation factor
q = 1e4-1; % Decimation factor
sro = (1-p/q)*1e6;
disp('Impairments:');
disp([' Sample rate offset (SRO): ' num2str(sro,'%.1f') ' PPM']);

% Resample the waveform, appending zeros to allow for filter delay
N = 100; % Size of filter used for resampling
rx = resample([tx; zeros(N,cfgVHT.NumTransmitAntennas)],p,q,N);

Impairments:
 Sample rate offset (SRO): -100.0 PPM

Residual carrier frequency offset is added to the waveform using the helperFrequencyOffset function.
In this example we assume the same oscillator is used for sampling and modulation, therefore the
CFO will be a function of the SRO and carrier frequency.

fc = 5.25e9; % Carrier frequency, Hertz
cfo = (sro*1e-6)*fc; % Carrier frequency offset, Hertz
disp([' Carrier frequency offset (CFO): ' num2str(cfo,'%.1f') ' Hz']);

fs = wlanSampleRate(cfgVHT); % Baseband sample rate
rx = helperFrequencyOffset(rx,fs,cfo); % Add frequency offset

 Carrier frequency offset (CFO): -525052.5 Hz

Noise is added to the waveform with 30 dBW variance.

awgnChannel = comm.AWGNChannel('NoiseMethod','Variance','Variance',10^(-30/10));
rx = awgnChannel(rx);

Front-End Synchronization and Receiver Processing

The following processing steps occur to synchronize the packet, in preparation for recovering the
data field.

1 The packet is detected
2 Coarse carrier frequency offset is estimated and corrected
3 Symbol timing synchronization is established
4 Fine carrier frequency offset is estimated and corrected
5 The L-LTF is OFDM demodulated and noise estimation is performed
6 The VHT-LTF is OFDM demodulated and channel estimation is performed

 Joint Sampling Rate and Carrier Frequency Offset Tracking

4-45

% Generate field indices
ind = wlanFieldIndices(cfgVHT);

% Packet detection
tOff = wlanPacketDetect(rx,cfgVHT.ChannelBandwidth);

% Coarse frequency offset correction
lstf = rx(tOff+(ind.LSTF(1):ind.LSTF(2)),:);
coarseCFOEst = wlanCoarseCFOEstimate(lstf,cfgVHT.ChannelBandwidth);
rx = helperFrequencyOffset(rx,fs,-coarseCFOEst);

% Symbol timing synchronization
nonhtPreamble = rx(tOff+(ind.LSTF(1):ind.LSIG(2)),:);
symOff = wlanSymbolTimingEstimate(nonhtPreamble,cfgVHT.ChannelBandwidth);
tOff = tOff+symOff;

% Fine frequency offset correction
lltf = rx(tOff+(ind.LLTF(1):ind.LLTF(2)),:);
fineCFOEst = wlanFineCFOEstimate(lltf,cfgVHT.ChannelBandwidth);
rx = helperFrequencyOffset(rx,fs,-fineCFOEst);

% Channel estimation
vhtltf = rx(tOff+(ind.VHTLTF(1):ind.VHTLTF(2)),:);
vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,cfgVHT);
chanEst = wlanVHTLTFChannelEstimate(vhtltfDemod,cfgVHT);

% Get single stream channel estimate
chanEstSSPilots = vhtSingleStreamChannelEstimate(vhtltfDemod,cfgVHT);

Recovery Without Sample Rate Offset or Residual CFO Tracking

The coarse and fine frequency offset estimation and correction removes the majority of CFO, but
residual CFO remains due to the presence of impairments in the waveform. This must be tracked and
corrected by the receiver.

disp('Front-end impairment correction:');
frontEndCFOEst = coarseCFOEst+fineCFOEst;
disp([' Estimated CFO: ' num2str(frontEndCFOEst,'%.1f') ' Hz']);
residualCFO = cfo-frontEndCFOEst;
disp([' Residual CFO after initial correction: ' num2str(residualCFO,'%.1f') ' Hz']);

Front-end impairment correction:
 Estimated CFO: -524764.3 Hz
 Residual CFO after initial correction: -288.2 Hz

The trackingVHTDataRecover function recovers the VHT data field with optional pilot tracking to
correct for timing and phase errors due to SRO and CFO. Pilot tracking is controlled using the
trackingRecoveryConfig object .

The data field is first recovered without pilot tracking. The data field is extracted from the waveform
using the start and end sample indices of the field at the baseband rate. If the receiver sampling rate
is higher than the transmitter rate, the receiver requires more samples than the transmitter
produces. To allow for this, Ne additional samples are extracted from the waveform and passed to the
recovery function. The maximum number of additional samples required is a function of the expected
SRO, the baseband sampling rate, and the maximum packet duration.

% Recovery configuration with pilot tracking disabled
cfgRec = trackingRecoveryConfig;

4 Signal Reception

4-46

cfgRec.PilotTracking = 'None';

% Extract data field with Ne additional samples to allow for negative SRO
maxDuration = 5.484e-3; % Maximum packet duration in seconds
maxSRO = 120; % PPM
Ne = ceil(fs*maxDuration*maxSRO*1e-6); % Number of extra samples
dataInd = tOff+(ind.VHTData(1):ind.VHTData(2)+Ne);
dataInd = dataInd(dataInd<=length(rx)); % Only use indices within waveform
data = rx(dataInd,:);

% Perform demodulation and decoding
[rxPSDUNoTrack,~,eqSymNoTrack] = trackingVHTDataRecover(data,chanEst,chanEstSSPilots,cfgVHT,cfgRec);

The equalized constellation is plotted which shows a rotation of all constellation points caused by
residual CFO, and a spreading of constellation points due to SRO. Despite the modest AWGN added to
the waveform, the impairments cause bit errors within the decoded PSDU.

ConstNoTrack = comm.ConstellationDiagram;
ConstNoTrack.Title = 'Equalized symbols with no pilot tracking';
ConstNoTrack.ReferenceConstellation = wlanReferenceSymbols(cfgVHT);
ConstNoTrack(eqSymNoTrack(:));

[~,berNoTrack] = biterr(rxPSDUNoTrack,psdu);
disp('Bit error rate:');
disp([' Without tracking: ' num2str(berNoTrack)]);

Bit error rate:
 Without tracking: 0.091022

 Joint Sampling Rate and Carrier Frequency Offset Tracking

4-47

Recovery With Sample Rate Offset Tracking and Residual CFO Tracking

Now the data field is recovered with joint timing and phase pilot tracking to correct for SRO and
residual CFO.

The tracking algorithm used in this example estimates absolute values of and per OFDM symbol,
and applies a per subcarrier and symbol phase correction to the demodulated symbols to reverse the
phase errors caused by SRO and CFO. The phase error between each received pilot subcarrier and
the expected value is calculated per symbol and averaged over PilotTrackingWindow OFDM
symbols. From this, least-square estimates of and are calculated per symbol. These estimates are
used to apply a phase correction to each symbol and subcarrier [3, 4].

% Recovery configuration with pilot tracking enabled
cfgRec = trackingRecoveryConfig;
cfgRec.PilotTracking = 'Joint'; % Joint timing and phase tracking
cfgRec.PilotTrackingWindow = 9; % Averaging window in OFDM symbols

4 Signal Reception

4-48

% Perform demodulation and decoding
[rxPSDU,~,eqSymTrack,cpe,peg] = trackingVHTDataRecover(data,chanEst,chanEstSSPilots,cfgVHT,cfgRec);

The equalized constellation is plotted which shows a clear 16-QAM constellation with no spreading or
rotation. There are no bit errors.

ConstTrack = comm.ConstellationDiagram;
ConstTrack.Title = 'Equalized symbols with joint pilot tracking';
ConstTrack.ReferenceConstellation = wlanReferenceSymbols(cfgVHT);
ConstTrack(eqSymTrack(:));

[~,berTrack] = biterr(rxPSDU,psdu);
disp([' With tracking: ' num2str(berTrack)]);

 With tracking: 0

The trackingVHTDataRecover function returns measurements from which the residual CFO, and SRO
can be estimated:

 Joint Sampling Rate and Carrier Frequency Offset Tracking

4-49

• cpe - The common phase error (radians) per symbol
• peg - The phase error gradient (radians per subcarrier) per symbol

The SRO and residual CFO are estimated from these measurements using a linear least-square fit of
the rate of change. The measurements are plotted using the trackingPlotSROCFOEstimates function.

[residualCFOEst,sroEst] = trackingPlotSROCFOEstimates(cpe,peg,cfgVHT);

% Display estimated SRO, residual CFO and total CFO
fprintf('Tracked impairments:\n');
fprintf(' Estimated residual CFO: %3.1f Hz (%.1f Hz error)\n', ...
 residualCFOEst,residualCFOEst-residualCFO);
fprintf(' Estimated SRO: %3.1f PPM (%.1f PPM error)\n',sroEst,sroEst-sro);
cfoEst = frontEndCFOEst+residualCFOEst; % Initial + tracked CFO estimate
fprintf('Estimated CFO (initial + tracked): %.1f Hz (%.1f Hz error)\n',cfoEst,cfoEst-cfo);

rng(s); % Restore the state of the random number generator

Tracked impairments:
 Estimated residual CFO: -260.5 Hz (27.8 Hz error)
 Estimated SRO: -101.2 PPM (-1.2 PPM error)
Estimated CFO (initial + tracked): -525024.8 Hz (27.8 Hz error)

Conclusion

This example shows how you can track and correct sample rate and carrier frequency offsets when
recovering the data field of a WLAN waveform.

4 Signal Reception

4-50

Data field recovery functions with joint pilot tracking for VHT, HT-MF and non-HT formats are
provided in this example, along with an object to configure the recovery algorithms:

• trackingVHTDataRecover.m
• trackingHTDataRecover.m
• trackingNonHTDataRecover.m
• trackingRecoveryConfig.m

To see an example of pilot tracking for HE format packets see “Recovery Procedure for an 802.11ax
Packet” on page 4-12.

Appendix

This example uses the following helper functions:

• helperFrequencyOffset.m
• trackingPlotSROCFOEstimates.m
• trackingRecoveryConfig.m
• trackingVHTDataRecover.m
• vhtSingleStreamChannelEstimate.m

Selected Bibliography

1 Speth, Michael, et al. "Optimum receiver design for wireless broad-band systems using OFDM."
IEEE Transactions on communications 47.11 (1999): 1668-1677.

2 IEEE Std 802.11™-2016 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

3 Chiueh, Tzi-Dar, Pei-Yun Tsai, and I-Wei Lai. Baseband receiver design for wireless MIMO-OFDM
communications. John Wiley & Sons, 2012.

4 Horlin, P.F. and Bourdoux, A. Digital Compensation for Analog Front-Ends: A New Approach to
Wireless Transceiver Design. Wiley, 2008.

 Joint Sampling Rate and Carrier Frequency Offset Tracking

4-51

Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading
Channel

Transmit a VHT waveform through a noisy MIMO channel. Extract the L-SIG, VHT-SIG-A, and VHT-
SIG-B fields and verify that they were correctly recovered.

Set the parameters used throughout the example.

cbw = 'CBW40'; % Channel bandwidth
fs = 40e6; % Sample rate (Hz)
ntx = 2; % Number of transmit antennas
nsts = 2; % Number of space-time streams
nrx = 3; % Number of receive antennas

Create a VHT configuration object that supports a 2x2 MIMO transmission and has an APEP length of
2000.

vht = wlanVHTConfig('ChannelBandwidth',cbw,'APEPLength',2000, ...
 'NumTransmitAntennas',ntx,'NumSpaceTimeStreams',nsts, ...
 'SpatialMapping','Direct','STBC',false);

Generate a VHT waveform containing a random PSDU.

txPSDU = randi([0 1],vht.PSDULength*8,1);
txPPDU = wlanWaveformGenerator(txPSDU,vht);

Create a 2x2 TGac channel and an AWGN channel with an SNR=10 dB.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',ntx,'NumReceiveAntennas',nrx, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-C');

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',10);

Pass the VHT waveforms through a 2x2 TGac channel and add the AWGN channel noise.

rxPPDU = chNoise(tgacChan(txPPDU));

Add additional white noise corresponding to a receiver with a 9 dB noise figure. The noise variance is
equal to k*T*B*F, where k is Boltzmann's constant, T is the ambient temperature, B is the channel
bandwidth (sample rate), and F is the receiver noise figure.

nVar = 10^((-228.6+10*log10(290) + 10*log10(fs) + 9)/10);
rxNoise = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

rxPPDU = rxNoise(rxPPDU);

Find the start and stop indices for all component fields of the PPDU.

ind = wlanFieldIndices(vht)

ind = struct with fields:
 LSTF: [1 320]
 LLTF: [321 640]
 LSIG: [641 800]

4 Signal Reception

4-52

 VHTSIGA: [801 1120]
 VHTSTF: [1121 1280]
 VHTLTF: [1281 1600]
 VHTSIGB: [1601 1760]
 VHTData: [1761 25600]

The preamble is contained in the first 1760 symbols. Plot the preamble.

plot(abs(rxPPDU(1:1760)))

Extract the L-LTF from the received PPDU using the start and stop indices determined by the
wlanFieldIndices function. Demodulate the L-LTF and estimate the channel coefficients.

rxLLTF = rxPPDU(ind.LLTF(1):ind.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,vht);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,vht);

Extract the L-SIG field from the received PPDU and recover its information bits.

rxLSIG = rxPPDU(ind.LSIG(1):ind.LSIG(2),:);
infoLSIG = wlanLSIGRecover(rxLSIG,chEstLLTF,nVar,cbw);

Inspect the L-SIG rate information and confirm that the sequence [1 1 0 1] is received. This
sequence corresponds to a 6 MHz data rate, which is used for all VHT transmissions.

rate = infoLSIG(1:4)'

 Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel

4-53

rate = 1x4 int8 row vector

 0 1 1 1

Extract the VHT-SIG-A and confirm that the CRC check passed.

rxVHTSIGA = rxPPDU(ind.VHTSIGA(1):ind.VHTSIGA(2),:);
[infoVHTSIGA,failCRC] = wlanVHTSIGARecover(rxVHTSIGA, ...
 chEstLLTF,nVar,cbw);
failCRC

failCRC = logical
 1

Extract and demodulate the VHT-LTF. Use the demodulated signal to estimate the channel coefficients
needed to recover the VHT-SIG-B field.

rxVHTLTF = rxPPDU(ind.VHTLTF(1):ind.VHTLTF(2),:);
demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEstVHTLTF = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Extract and recover the VHT-SIG-B.

rxVHTSIGB = rxPPDU(ind.VHTSIGB(1):ind.VHTSIGB(2),:);
infoVHTSIGB = wlanVHTSIGBRecover(rxVHTSIGB,chEstVHTLTF,nVar,cbw);

Verify that the APEP length, contained in the first 19 bits of the VHT-SIG-B, corresponds to the
specified length of 2000 bits.

pktLbits = infoVHTSIGB(1:19)';
pktLen = bi2de(double(pktLbits))*4

pktLen = 1676920

4 Signal Reception

4-54

End-to-End VHT Simulation with Frequency Correction
This example shows how to generate, transmit, recover and view a VHT MIMO waveform.

Steps in the example:

• Transmit a VHT waveform through a MIMO channel with AWGN
• Perform a two-stage process to estimate and correct for a frequency offset
• Estimate the channel response
• Recover the VHT data field
• Compare the transmitted and received PSDUs to determine if bit errors occurred

Set the parameters used throughout the example.

cbw = 'CBW160'; % Channel bandwidth
fs = 160e6; % Sample rate (Hz)
ntx = 2; % Number of transmit antennas
nsts = 2; % Number of space-time streams
nrx = 2; % Number of receive antennas

Create a VHT configuration object that supports a 2x2 MIMO transmission and has an APEP length of
2000.

vht = wlanVHTConfig('ChannelBandwidth',cbw,'APEPLength',2000, ...
 'NumTransmitAntennas',ntx,'NumSpaceTimeStreams',nsts, ...
 'SpatialMapping','Direct','STBC',false);

Generate a VHT waveform containing a random PSDU.

txPSDU = randi([0 1],vht.PSDULength*8,1);
txPPDU = wlanWaveformGenerator(txPSDU,vht);

Create a 2x2 TGac channel and an AWGN channel.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',ntx,'NumReceiveAntennas',nrx, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-C');
awgnChan = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Create a phase/frequency offset object.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. Pass the transmitted waveform
through the noisy TGac channel.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
rxPPDU = awgnChan(tgacChan(txPPDU), nVar);

Introduce a frequency offset of 500 Hz.

rxPPDUcfo = pfOffset(rxPPDU,500);

Find the start and stop indices for all component fields of the PPDU.

 End-to-End VHT Simulation with Frequency Correction

4-55

ind = wlanFieldIndices(vht);

Extract the L-STF. Estimate and correct for the carrier frequency offset.

rxLSTF = rxPPDUcfo(ind.LSTF(1):ind.LSTF(2),:);

foffset1 = wlanCoarseCFOEstimate(rxLSTF,cbw);
rxPPDUcorr = pfOffset(rxPPDUcfo,-foffset1);

Extract the L-LTF from the corrected signal. Estimate and correct for the residual frequency offset.

rxLLTF = rxPPDUcorr(ind.LLTF(1):ind.LLTF(2),:);

foffset2 = wlanFineCFOEstimate(rxLLTF,cbw);
rxPPDU2 = pfOffset(rxPPDUcorr,-foffset2);

Extract and demodulate the VHT-LTF. Estimate the channel coefficients.

rxVHTLTF = rxPPDU2(ind.VHTLTF(1):ind.VHTLTF(2),:);
dLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEst = wlanVHTLTFChannelEstimate(dLTF,vht);

Extract the VHT data field from the received and frequency-corrected PPDU. Recover the data field.

rxVHTData = rxPPDU2(ind.VHTData(1):ind.VHTData(2),:);
rxPSDU = wlanVHTDataRecover(rxVHTData,chEst,nVar,vht);

Calculate the number of bit errors in the received packet.

numErr = biterr(txPSDU,rxPSDU)

numErr = 0

4 Signal Reception

4-56

Propagation Channel Models

5

802.11ad Packet Error Rate Single Carrier PHY Simulation with
TGay Channel

This example shows how to measure the packet error rate of an IEEE® 802.11ad™ DMG single
carrier (SC) PHY link using an end-to-end simulation.

Introduction

In this example an end-to-end simulation is used to determine the packet error rate for an 802.11ad
SC [1] link with a TGay millimeter-wave channel [2] at a selection of SNR points. At each SNR
point multiple packets are transmitted through the fading channel, synchronized, demodulated and
the PSDUs recovered. Carrier frequency offset and a time delay are also modeled. The PSDUs are
compared to those transmitted to determine the number of packet errors and hence the packet error
rate. The processing for each packet is summarized in the following diagram.

This example also demonstrates how a parfor loop can be used instead of the for loop when
simulating each SNR point to speed up a simulation. parfor, as part of the Parallel Computing
Toolbox™, executes processing for each SNR in parallel to reduce the total simulation time.

Waveform Configuration

An 802.11ad DMG SC PHY transmission is simulated in this example. The DMG format configuration
object contains the format specific configuration of the transmission. The object is created using the
wlanDMGConfig function. The properties of the object contain the configuration of the transmitted
packet. In this example the object is configured to generate a single carrier waveform of MCS "9".
The MCS determines the PHY type used and in this example it must be a string within the range 1-12,
or one of {9.1 12.1 12.2 12.3 12.4 12.5 12.6} to simulate the SC PHY.

% Create a format configuration object
cfgDMG = wlanDMGConfig;
mcs = "9"; % MCS specified as a string scalar or string vector
cfgDMG.PSDULength = 4096; % PSDULength in bytes

Fading Channel Configuration

In this example we simulate a TGay channel model for the open area hotspot scenario, using the
wlanTGayChannel object. Both the transmit and receive arrays are a 4x4 uniform rectangular array

5 Propagation Channel Models

5-2

(URA). Ray-tracing is performed from the transmit to the receive array to derive two deterministic
rays: one LOS ray and another NLOS ray with one-order reflection from the ground. Random rays
and intra-cluster rays are subsequently generated according to the quasi-deterministic (Q-D)
modeling approach and parameters in [2]. Beamforming is performed to set the transmit and
receive antenna steering direction along the ray with the maximum power. The fading channel
impulse responses are normalized so no power gain or loss is introduced by the channel. Both the
channel input and output signals are unpolarized.

% Get sampling rate and specify carrier frequency
fs = wlanSampleRate(cfgDMG);
fc = 60e9;

% Create a TGay channel object
tgayChan = wlanTGayChannel;
tgayChan.SampleRate = fs;
tgayChan.CarrierFrequency = fc;
tgayChan.Environment = 'Open area hotspot';
tgayChan.TransmitArray.Size = [4 4];
tgayChan.TransmitArrayPosition = [0; 0; 6]; % Meters
tgayChan.TransmitArrayOrientation = [0; 270; 0]; % Degrees
tgayChan.ReceiveArray.Size = [4 4];
tgayChan.ReceiveArrayPosition = [6; 6; 1.5]; % Meters
tgayChan.ReceiveArrayOrientation = [90; 0; 0]; % Degrees
tgayChan.BeamformingMethod = 'Maximum power ray';
tgayChan.NormalizeImpulseResponses = true;

Given the channel object configuration, we display a 3D map to show the environment and antenna
array settings. The two deterministic rays from ray-tracing are also shown in the figure.

showEnvironment(tgayChan);

 802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay Channel

5-3

Channel Impairment

The maximum tolerance for the transmitter center frequency must be within [-20, +20] ppm [1]. In
this example, a clock accuracy of 20ppm is considered to derive the CFO. The transmitted signal is
delayed by 500 samples and also appended by 100 zero samples at the end to account for delays from
TGay channel filtering.

ppm = 20; % Clock accuracy to drive the CFO (ppm)
freqOffset = ppm*1e-6*fc; % Carrier frequency offset (Hz)
delay = 500; % Sample to delay the waveform
zeroPadding = 100; % Add trailing zeros to allow for channel delay

Simulation Parameters

For each SNR point (dB) in the cell snrRanges a number of packets are generated, passed through a
channel and demodulated to determine the packet error rate. The SNR points to test are selected
from snrRanges based on the MCS simulated.

snrRanges = {-2.0:0.5:0.5, ... % MCS 1
 0.0:1.0:5.0, ... % MCS 2
 1.0:1.2:7.0, ... % MCS 3
 2.0:1.2:8.0, ... % MCS 4
 2.0:1.3:8.5, ... % MCS 5
 2.5:1.3:9.0, ... % MCS 6
 4.0:1.3:10.5, ... % MCS 7
 5.0:1.5:12.5,... % MCS 8
 5.5:1.5:13.0, ... % MCS 9

5 Propagation Channel Models

5-4

 7.0:1.5:14.5, ... % MCS 9.1
 8.0:1.8:17.0, ... % MCS 10
 10.0:2.0:20.0, ... % MCS 11
 12.0:2.0:22.0, ... % MCS 12
 12.0:2.0:22.0, ... % MCS 12.1
 14.0:2.0:24.0, ... % MCS 12.2
 16.0:2.5:28.5, ... % MCS 12.3
 17.0:2.5:29.5, ... % MCS 12.4
 17.0:2.5:29.5, ... % MCS 12.5
 20.0:2.5:32.5}; % MCS 12.6

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For meaningful results we
recommend increasing the numbers.

maxNumErrors = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % Maximum number of packets at an SNR point

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated.

For each packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through a TGay channel model. Different channel realizations are

modeled for different packets.
3 AWGN is added to the received waveform. comm.AWGNChannel is configured to provide the

correct SNR.
4 The frequency offset impairment is added to each packet.
5 The packet is detected.
6 Carrier frequency offset is estimated and corrected.
7 Fine timing synchronization is established. The CE field samples are provided for fine timing to

allow for packet detection at the start of the STF.
8 The STF and CE fields are extracted from the synchronized received waveform. The noise and

channel estimation is performed on the recovered fields respectively.
9 The data field, excluding the first guard interval is extracted and reshaped into blocks. The

received symbols in the data field are equalized.
10 The received symbols are tracked and corrected for phase errors caused by any residual carrier

frequency offset.
11 The data field is decoded to recover the PSDU bits.

A parfor loop can be used to parallelize processing of the SNR points, therefore for each SNR point
an AWGN channel is created and configured with comm.AWGNChannel. To enable the use of parallel
computing for increased speed comment out the for statement and uncomment the parfor
statement below.

 802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay Channel

5-5

numSNR = numel(snrRanges{1}); % Number of SNR points
if ~isstring(mcs)
 error('MCS must be specified as a string scalar or string vector');
end
numMCS = numel(mcs); % Number of MCS
packetErrorRate = zeros(numMCS,numSNR);
Ngi = 64; % Fixed GI length defined in the standard (20.6.3.2.5)
validMCS = string(sort([1:12 9.1 12.1:0.1:12.6]));

for imcs = 1:numMCS
 cfgDMG.MCS = mcs(imcs);
 if ~strcmp(phyType(cfgDMG),'SC')
 error('This example only supports DMG SC PHY simulation');
 end
 ind = wlanFieldIndices(cfgDMG);
 snr = snrRanges{mcs(imcs)==validMCS}; % SNR points to simulate from MCS

 % parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
 for isnr = 1:numSNR % Use 'for' to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',10);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Create an instance of the AWGN channel per SNR point simulated
 awgnChannel = comm.AWGNChannel;
 awgnChannel.NoiseMethod = 'Signal to noise ratio (SNR)';
 awgnChannel.SNR = snr(isnr);

 % Set simulation parameters
 numPacketErrors = 0;
 numPkt = 1; % Index of the transmitted packet

 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet waveform
 psdu = randi([0 1],cfgDMG.PSDULength*8,1);
 txWaveform = wlanWaveformGenerator(psdu,cfgDMG);

 % Add delay and trailing zeros
 tx = [zeros(delay,1); txWaveform; zeros(zeroPadding,1)];

 % Transmit through a TGay channel. Reset the channel for a
 % different realization per packet.
 reset(tgayChan);
 chanOut = tgayChan(tx);

 % Add noise
 rx = awgnChannel(chanOut);

 % Add CFO
 rx = helperFrequencyOffset(rx,fs,freqOffset);

 % Packet detection
 threshold = 0.03; % Good for low SNRs
 pktStartOffset = dmgPacketDetect(rx,0,threshold);
 if isempty(pktStartOffset) % If empty no STF detected; packet error
 numPacketErrors = numPacketErrors+1;

5 Propagation Channel Models

5-6

 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Frequency offset estimation and correction
 stf = rx(pktStartOffset+(ind.DMGSTF(1):ind.DMGSTF(2)));
 fOffsetEst = dmgCFOEstimate(stf);
 rx = helperFrequencyOffset(rx,fs,-fOffsetEst);

 % Symbol timing and channel estimate
 preamblefield = rx(pktStartOffset+1:pktStartOffset+ind.DMGHeader(2),:);
 [symbolTimingOffset,chanEst] = dmgTimingAndChannelEstimate(preamblefield);
 startOffset = pktStartOffset+symbolTimingOffset;

 % If not enough samples to decode detected data field start,
 % then assume synchronization error and packet error
 if (startOffset+ind.DMGData(2))>size(rx,1)
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Noise estimation using the STF as repeating sequence
 stf = rx(pktStartOffset+(ind.DMGSTF(1):ind.DMGSTF(2)));
 nVarEst = dmgSTFNoiseEstimate(stf);

 % Extract data field (ignore first GI)
 rxData = rx(startOffset+((ind.DMGData(1)+Ngi):ind.DMGData(2)));

 % Linear frequency domain equalization
 rxEqDataBlks = dmgSingleCarrierFDE(rxData,chanEst,nVarEst);

 % Unique word phase tracking
 rxEqDataBlks = dmgUniqueWordPhaseTracking(rxEqDataBlks);

 % Discard GI from all blocks
 rxDataSym = rxEqDataBlks(1:end-Ngi,:);

 % Recover the transmitted PSDU from DMG Data field
 dataDecode = wlanDMGDataBitRecover(rxDataSym,nVarEst,cfgDMG);

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(psdu,dataDecode));
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(imcs,isnr) = numPacketErrors/(numPkt-1);
 disp(join([" MCS:" cfgDMG.MCS ", SNR " ...
 num2str(snr(isnr)) " completed after " ...
 num2str(numPkt-1) " packets, PER: " ...
 num2str(packetErrorRate(imcs,isnr))],""));
 end
end

 MCS:9, SNR 5.5 completed after 11 packets, PER: 1
 MCS:9, SNR 7 completed after 14 packets, PER: 0.78571

 802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay Channel

5-7

 MCS:9, SNR 8.5 completed after 20 packets, PER: 0.55
 MCS:9, SNR 10 completed after 35 packets, PER: 0.31429
 MCS:9, SNR 11.5 completed after 70 packets, PER: 0.15714
 MCS:9, SNR 13 completed after 100 packets, PER: 0.08

Plot Packet Error Rate vs SNR Results

markers = 'ox*sd^v><ph+ox*sd^v';
color = 'bmcrgbrkymcrgbrkymc';
figure;
for imcs = 1:numMCS
 semilogy(snrRanges{mcs(imcs)==validMCS},packetErrorRate(imcs,:).',['-' markers(imcs) color(imcs)]);
 hold on;
end
grid on;
xlabel('SNR (dB)');
ylabel('PER');
dataStr = arrayfun(@(x)sprintf('MCS %s',x),mcs,'UniformOutput',false);
legend(dataStr);
title('PER for DMG SC-PHY, TGay channel');

Further Exploration

The number of packets tested at each SNR point is controlled by two parameters; maxNumErrors
and maxNumPackets. For meaningful results, it is recommended that these values should be larger
than those presented in this example. Increasing the number of packets simulated allows the PER
under different scenarios to be compared. Try changing the MCS value and compare the packet error

5 Propagation Channel Models

5-8

rate. As an example, the figure below was created by running the example for all single carrier MCS
with PSDULength: 8192 bytes, maxNumErrors: 1000 and maxNumPackets: 10000.

Explore the TGay channel settings by changing the environment ('Street canyon hotspot' or 'Large
hotel lobby'), user configurations, polarization type, array configurations, beamforming method and
so on. In the street canyon scenario, the object calculates deterministic rays up to 1-order reflection
from the ground and walls. In the hotel lobby scenario, the deterministic rays are up to 2-order
reflection from the ground, ceiling and/or walls. Due to the additional reflection of rays, the PER
results are typically better than the above obtained from the open area scenario.

Appendix

This example uses the following helper functions and objects:

• helperFrequencyOffset.m
• dmgCFOEstimate.m
• dmgPacketDetect.m
• dmgTimingAndChannelEstimate.m

 802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay Channel

5-9

• dmgSingleCarrierFDE.m
• dmgSTFNoiseEstimate.m
• dmgUniqueWordPhaseTracking.m

Selected Bibliography

1 IEEE Std 802.11ad™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

2 A. Maltsev and et. al, Channel Models for IEEE 802.11ay, IEEE 802.11-15/1150r9, Mar. 2017.

5 Propagation Channel Models

5-10

802.11ac Packet Error Rate Simulation for 8x8 TGac Channel
This example shows how to measure the packet error rate of an IEEE® 802.11ac™ VHT link using an
end-to-end simulation with a fading TGac channel model and additive white Gaussian noise.

Introduction

In this example an end-to-end simulation is used to determine the packet error rate for an 802.11ac
[1] VHT link with a fading channel at a selection of SNR points. At each SNR point multiple packets
are transmitted through a channel, demodulated and the PSDUs recovered. The PSDUs are compared
to those transmitted to determine the number of packet errors and hence the packet error rate.
Packet detection, timing synchronization, carrier frequency offset correction and phase tracking are
performed by the receiver. The processing for each packet is summarized in the following

This example also demonstrates how a parfor loop can be used instead of the for loop when
simulating each SNR point to speed up a simulation. The parfor function, as part of the Parallel
Computing Toolbox™, executes processing for each SNR in parallel to reduce the total simulation
time.

Waveform Configuration

An 802.11ac VHT transmission is simulated in this example. The VHT format configuration object,
wlanVHTConfig, contains the format-specific configuration of the transmission. The properties of the
object contain the configuration. In this example the object is configured for a 80 MHz channel
bandwidth, 8 transmit antennas, 8 space-time streams, no space time block coding and 256-QAM
rate-5/6 (MCS 9).

% Create a format configuration object for a 8-by-8 VHT transmission
cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW80'; % 80 MHz channel bandwidth
cfgVHT.NumTransmitAntennas = 8; % 8 transmit antennas
cfgVHT.NumSpaceTimeStreams = 8; % 8 space-time streams
cfgVHT.APEPLength = 3000; % APEP length in bytes
cfgVHT.MCS = 9; % 256-QAM rate-5/6

Channel Configuration

In this example a TGac N-LOS channel model is used with delay profile Model-D. For Model-D when
the distance between transmitter and receiver is greater than or equal to 10 meters, the model is
NLOS. This is described further in wlanTGacChannel. An 8x8 MIMO channel is simulated in this
example therefore 8 receive antennas are specified.

 802.11ac Packet Error Rate Simulation for 8x8 TGac Channel

5-11

% Create and configure the channel
tgacChannel = wlanTGacChannel;
tgacChannel.DelayProfile = 'Model-D';
tgacChannel.NumReceiveAntennas = 8;
tgacChannel.TransmitReceiveDistance = 10; % Distance in meters for NLOS
tgacChannel.ChannelBandwidth = cfgVHT.ChannelBandwidth;
tgacChannel.NumTransmitAntennas = cfgVHT.NumTransmitAntennas;
tgacChannel.LargeScaleFadingEffect = 'None';

Simulation Parameters

For each SNR point in the vector snr a number of packets are generated, passed through a channel
and demodulated to determine the packet error rate.

snr = 40:5:50;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For meaningful results we
recommend increasing the numbers.

maxNumErrors = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % Maximum number of packets at an SNR point

Set the remaining variables for the simulation.

% Get the baseband sampling rate
fs = wlanSampleRate(cfgVHT);

% Get the OFDM info
ofdmInfo = wlanVHTOFDMInfo('VHT-Data',cfgVHT);

% Set the sampling rate of the channel
tgacChannel.SampleRate = fs;

% Indices for accessing each field within the time-domain packet
ind = wlanFieldIndices(cfgVHT);

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated.

For each packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through a different realization of the TGac channel model.
3 AWGN is added to the received waveform to create the desired average SNR per subcarrier after

OFDM demodulation. The comm.AWGNChannel object is configured to provide the correct SNR.
The configuration accounts for normalization within the channel by the number of receive
antennas, and the noise energy in unused subcarriers which are removed during OFDM
demodulation.

5 Propagation Channel Models

5-12

4 The packet is detected.
5 Coarse carrier frequency offset is estimated and corrected.
6 Fine timing synchronization is established. The L-STF, L-LTF and L-SIG samples are provided for

fine timing to allow for packet detection at the start or end of the L-STF.
7 Fine carrier frequency offset is estimated and corrected.
8 The VHT-LTF is extracted from the synchronized received waveform. The VHT-LTF is OFDM

demodulated and channel estimation is performed.
9 The VHT Data field is extracted from the synchronized received waveform. The PSDU is

recovered using the extracted field and the channel estimate.

A parfor loop can be used to parallelize processing of the SNR points, therefore for each SNR point
an AWGN channel is created and configured with the comm.AWGNChannel object. To enable the use
of parallel computing for increased speed comment out the for statement and uncomment the
parfor statement below.

S = numel(snr);
packetErrorRate = zeros(S,1);
%parfor i = 1:S % Use 'parfor' to speed up the simulation
for i = 1:S % Use 'for' to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = i;
 RandStream.setGlobalStream(stream);

 % Create an instance of the AWGN channel per SNR point simulated
 awgnChannel = comm.AWGNChannel;
 awgnChannel.NoiseMethod = 'Signal to noise ratio (SNR)';
 % Normalization
 awgnChannel.SignalPower = 1/tgacChannel.NumReceiveAntennas;
 % Account for energy in nulls
 awgnChannel.SNR = snr(i)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet waveform
 txPSDU = randi([0 1],cfgVHT.PSDULength*8,1); % PSDULength in bytes
 tx = wlanWaveformGenerator(txPSDU,cfgVHT);

 % Add trailing zeros to allow for channel delay
 tx = [tx; zeros(50,cfgVHT.NumTransmitAntennas)]; %#ok<AGROW>

 % Pass the waveform through the fading channel model
 reset(tgacChannel); % Reset channel for different realization
 rx = tgacChannel(tx);

 % Add noise
 rx = awgnChannel(rx);

 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rx,cfgVHT.ChannelBandwidth);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;

 802.11ac Packet Error Rate Simulation for 8x8 TGac Channel

5-13

 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-STF and perform coarse frequency offset correction
 lstf = rx(coarsePktOffset+(ind.LSTF(1):ind.LSTF(2)),:);
 coarseFreqOff = wlanCoarseCFOEstimate(lstf,cfgVHT.ChannelBandwidth);
 rx = helperFrequencyOffset(rx,fs,-coarseFreqOff);

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rx(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,...
 cfgVHT.ChannelBandwidth);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected outwith the range of expected delays from the
 % channel modeling; packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-LTF and perform fine frequency offset correction
 lltf = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
 fineFreqOff = wlanFineCFOEstimate(lltf,cfgVHT.ChannelBandwidth);
 rx = helperFrequencyOffset(rx,fs,-fineFreqOff);

 % Extract VHT-LTF samples from the waveform, demodulate and perform
 % channel estimation
 vhtltf = rx(pktOffset+(ind.VHTLTF(1):ind.VHTLTF(2)),:);
 vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,cfgVHT);

 % Get single stream channel estimate
 chanEstSSPilots = vhtSingleStreamChannelEstimate(vhtltfDemod,cfgVHT);

 % Channel estimate
 chanEst = wlanVHTLTFChannelEstimate(vhtltfDemod,cfgVHT);

 % Extract VHT Data samples from the waveform
 vhtdata = rx(pktOffset+(ind.VHTData(1):ind.VHTData(2)),:);

 % Estimate the noise power in VHT data field
 nVarVHT = vhtNoiseEstimate(vhtdata,chanEstSSPilots,cfgVHT);

 % Recover the transmitted PSDU in VHT Data
 rxPSDU = wlanVHTDataRecover(vhtdata,chanEst,nVarVHT,cfgVHT);

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(txPSDU,rxPSDU));
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(i) = numPacketErrors/(numPkt-1);

5 Propagation Channel Models

5-14

 disp(['SNR ' num2str(snr(i)) ' completed after ' ...
 num2str(numPkt-1) ' packets, PER: ' ...
 num2str(packetErrorRate(i))]);
end

SNR 40 completed after 11 packets, PER: 1
SNR 45 completed after 15 packets, PER: 0.73333
SNR 50 completed after 100 packets, PER: 0.04

Plot Packet Error Rate vs SNR Results

figure
semilogy(snr,packetErrorRate,'-ob');
grid on;
xlabel('SNR (dB)');
ylabel('PER');
title('802.11ac 80MHz, MCS9, Direct Mapping, 8x8 Channel Model D-NLOS');

Further Exploration

The number of packets tested at each SNR point is controlled by two parameters; maxNumErrors
and maxNumPackets. For meaningful results it is recommend that these values should be larger than
those presented in this example. Increasing the number of packets simulated allows the PER under
different scenarios to be compared. Try changing the transmission and reception configurations and
compare the packet error rate. As an example, the figure below was created by running the example
for maxNumErrors: 1000 and maxNumPackets: 10000.

 802.11ac Packet Error Rate Simulation for 8x8 TGac Channel

5-15

Appendix

This example uses the following helper functions:

• helperFrequencyOffset.m
• vhtNoiseEstimate.m
• vhtSingleStreamChannelEstimate.m

Selected Bibliography

1 IEEE Std 802.11ac™-2013 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

5 Propagation Channel Models

5-16

802.11n Packet Error Rate Simulation for 2x2 TGn Channel
This example shows how to measure the packet error rate of an IEEE® 802.11n™ HT link using an
end-to-end simulation with a fading TGn channel model and additive white Gaussian noise.

Introduction

In this example an end-to-end simulation is used to determine the packet error rate for an 802.11n
HT [1] link with a fading channel at a selection of SNR points. At each SNR point multiple packets
are transmitted through a channel, demodulated and the PSDUs recovered. The PSDUs are compared
to those transmitted to determine the number of packet errors and hence the packet error rate.
Packet detection, timing synchronization, carrier frequency offset correction and phase tracking are
performed by the receiver. The processing for each packet is summarized in the following diagram.

This example also demonstrates how a parfor loop can be used instead of a for loop when
simulating each SNR point to speed up a simulation. The parfor function, as part of the Parallel
Computing Toolbox™, executes processing for each SNR in parallel to reduce the total simulation
time.

Waveform Configuration

An 802.11n HT transmission is simulated in this example. The HT format configuration object,
wlanHTConfig, contains the format specific configuration of the transmission. The properties of the
object contain the configuration. In this example the object is configured for a 20 MHz channel
bandwidth, 2 transmit antennas, 2 space time streams and no space time block coding.

% Create a format configuration object for a 2-by-2 HT transmission
cfgHT = wlanHTConfig;
cfgHT.ChannelBandwidth = 'CBW20'; % 20 MHz channel bandwidth
cfgHT.NumTransmitAntennas = 2; % 2 transmit antennas
cfgHT.NumSpaceTimeStreams = 2; % 2 space-time streams
cfgHT.PSDULength = 1000; % PSDU length in bytes
cfgHT.MCS = 15; % 2 spatial streams, 64-QAM rate-5/6
cfgHT.ChannelCoding = 'BCC'; % BCC channel coding

Channel Configuration

In this example a TGn N-LOS channel model is used with delay profile Model-B. For Model-B when
the distance between transmitter and receiver is greater than or equal to five meters, the model is
NLOS. This is described further in wlanTGnChannel.

 802.11n Packet Error Rate Simulation for 2x2 TGn Channel

5-17

% Create and configure the channel
tgnChannel = wlanTGnChannel;
tgnChannel.DelayProfile = 'Model-B';
tgnChannel.NumTransmitAntennas = cfgHT.NumTransmitAntennas;
tgnChannel.NumReceiveAntennas = 2;
tgnChannel.TransmitReceiveDistance = 10; % Distance in meters for NLOS
tgnChannel.LargeScaleFadingEffect = 'None';

Simulation Parameters

For each SNR point in the vector snr a number of packets are generated, passed through a channel
and demodulated to determine the packet error rate.

snr = 25:10:45;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumPEs is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For meaningful results we
recommend increasing the numbers.

maxNumPEs = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % Maximum number of packets at an SNR point

Set the remaining variables for the simulation.

% Get the baseband sampling rate
fs = wlanSampleRate(cfgHT);

% Get the OFDM info
ofdmInfo = wlanHTOFDMInfo('HT-Data',cfgHT);

% Set the sampling rate of the channel
tgnChannel.SampleRate = fs;

% Indices for accessing each field within the time-domain packet
ind = wlanFieldIndices(cfgHT);

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated.

For each packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through a different realization of the TGn channel model.
3 AWGN is added to the received waveform to create the desired average SNR per subcarrier after

OFDM demodulation. The comm.AWGNChannel object is configured to provide the correct SNR.
The configuration accounts for normalization within the channel by the number of receive
antennas, and the noise energy in unused subcarriers which are removed during OFDM
demodulation.

5 Propagation Channel Models

5-18

4 The packet is detected.
5 Coarse carrier frequency offset is estimated and corrected.
6 Fine timing synchronization is established. The L-STF, L-LTF and L-SIG samples are provided for

fine timing to allow for packet detection at the start or end of the L-STF.
7 Fine carrier frequency offset is estimated and corrected.
8 The HT-LTF is extracted from the synchronized received waveform. The HT-LTF is OFDM

demodulated and channel estimation is performed.
9 The HT Data field is extracted from the synchronized received waveform. The PSDU is recovered

using the extracted field and the channel estimate.

A parfor loop can be used to parallelize processing of the SNR points, therefore for each SNR point
an AWGN channel is created and configured with the comm.AWGNChannel object. To enable the use
of parallel computing for increased speed comment out the 'for' statement and uncomment the
'parfor' statement below.

S = numel(snr);
packetErrorRate = zeros(S,1);
%parfor i = 1:S % Use 'parfor' to speed up the simulation
for i = 1:S % Use 'for' to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = i;
 RandStream.setGlobalStream(stream);

 % Create an instance of the AWGN channel per SNR point simulated
 awgnChannel = comm.AWGNChannel;
 awgnChannel.NoiseMethod = 'Signal to noise ratio (SNR)';
 % Normalization
 awgnChannel.SignalPower = 1/tgnChannel.NumReceiveAntennas;
 % Account for energy in nulls
 awgnChannel.SNR = snr(i)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 n = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumPEs && n<=maxNumPackets
 % Generate a packet waveform
 txPSDU = randi([0 1],cfgHT.PSDULength*8,1); % PSDULength in bytes
 tx = wlanWaveformGenerator(txPSDU,cfgHT);

 % Add trailing zeros to allow for channel filter delay
 tx = [tx; zeros(15,cfgHT.NumTransmitAntennas)]; %#ok<AGROW>

 % Pass the waveform through the TGn channel model
 reset(tgnChannel); % Reset channel for different realization
 rx = tgnChannel(tx);

 % Add noise
 rx = awgnChannel(rx);

 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rx,cfgHT.ChannelBandwidth);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;

 802.11n Packet Error Rate Simulation for 2x2 TGn Channel

5-19

 n = n+1;
 continue; % Go to next loop iteration
 end

 % Extract L-STF and perform coarse frequency offset correction
 lstf = rx(coarsePktOffset+(ind.LSTF(1):ind.LSTF(2)),:);
 coarseFreqOff = wlanCoarseCFOEstimate(lstf,cfgHT.ChannelBandwidth);
 rx = helperFrequencyOffset(rx,fs,-coarseFreqOff);

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rx(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,...
 cfgHT.ChannelBandwidth);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected outwith the range of expected delays from the
 % channel modeling; packet error
 if pktOffset>15
 numPacketErrors = numPacketErrors+1;
 n = n+1;
 continue; % Go to next loop iteration
 end

 % Extract L-LTF and perform fine frequency offset correction
 lltf = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
 fineFreqOff = wlanFineCFOEstimate(lltf,cfgHT.ChannelBandwidth);
 rx = helperFrequencyOffset(rx,fs,-fineFreqOff);

 % Extract HT-LTF samples from the waveform, demodulate and perform
 % channel estimation
 htltf = rx(pktOffset+(ind.HTLTF(1):ind.HTLTF(2)),:);
 htltfDemod = wlanHTLTFDemodulate(htltf,cfgHT);
 chanEst = wlanHTLTFChannelEstimate(htltfDemod,cfgHT);

 % Extract HT Data samples from the waveform
 htdata = rx(pktOffset+(ind.HTData(1):ind.HTData(2)),:);

 % Estimate the noise power in HT data field
 nVarHT = htNoiseEstimate(htdata,chanEst,cfgHT);

 % Recover the transmitted PSDU in HT Data
 rxPSDU = wlanHTDataRecover(htdata,chanEst,nVarHT,cfgHT);

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(txPSDU,rxPSDU));
 numPacketErrors = numPacketErrors+packetError;
 n = n+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(i) = numPacketErrors/(n-1);
 disp(['SNR ' num2str(snr(i))...
 ' completed after ' num2str(n-1) ' packets,'...
 ' PER: ' num2str(packetErrorRate(i))]);
end

5 Propagation Channel Models

5-20

SNR 25 completed after 11 packets, PER: 1
SNR 35 completed after 45 packets, PER: 0.24444
SNR 45 completed after 100 packets, PER: 0.01

Plot Packet Error Rate vs SNR Results

figure;
semilogy(snr,packetErrorRate,'-ob');
grid on;
xlabel('SNR [dB]');
ylabel('PER');
title('802.11n 20MHz, MCS15, Direct Mapping, 2x2 Channel Model B-NLOS');

Further Exploration

The number of packets tested at each SNR point is controlled by two parameters; maxNumPEs and
maxNumPackets. For meaningful results it is recommended that these values should be larger than
those presented in this example. Increasing the number of packets simulated allows the PER under
different scenarios to be compared. Try changing the transmit encoding scheme to LDPC and
compare the packet error rate. As an example, the figure below was created by running the example
for maxNumPEs: 200 and maxNumPackets: 10000, with four different configurations; 1x1 and 2x2
with BCC and LDPC encoding.

 802.11n Packet Error Rate Simulation for 2x2 TGn Channel

5-21

Appendix

This example uses the following helper functions:

• helperFrequencyOffset.m
• htNoiseEstimate.m

Selected Bibliography

1 IEEE Std 802.11™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

5 Propagation Channel Models

5-22

802.11ah Packet Error Rate Simulation for 2x2 TGah Channel
This example shows how to measure the packet error rate of an IEEE® 802.11ah™ S1G short
preamble link using an end-to-end simulation with a fading TGah indoor channel model and additive
white Gaussian noise.

Introduction

In this example an end-to-end simulation is used to determine the packet error rate for an 802.11ah
[1] S1G short preamble link with a fading channel at a selection of SNR points. For each SNR point
multiple packets are transmitted through a channel, demodulated and the PSDUs recovered. The
PSDUs are compared to those transmitted to determine the number of packet errors and hence the
packet error rate. The processing for each packet is summarized in the following diagram.

This example simulates the S1G-Short format with no impairment correction apart from channel
estimation and equalization. The received signal is synchronized to the start of the packet by
compensating for a known delay and the default OFDM demodulation symbol sampling offset. No
frequency synchronization is performed. For information on how to automatically detect and
synchronize to the received signal, see these examples for 802.11n™ and 802.11ac™.

• “802.11n Packet Error Rate Simulation for 2x2 TGn Channel” on page 5-17
• “802.11ac Packet Error Rate Simulation for 8x8 TGac Channel” on page 5-11

This example also demonstrates how a parfor loop can be used instead of the for loop when
simulating each SNR point to speed up a simulation. parfor as part of the Parallel Computing
Toolbox™, executes processing for each SNR in parallel to reduce the total simulation time.

Waveform Configuration

A single-user 802.11ah S1G short preamble transmission is simulated in this example. An S1G format
configuration object contains the format specific configuration of the transmission. The object is
created using the wlanS1GConfig function. The properties of the object contain the configuration.

 802.11ah Packet Error Rate Simulation for 2x2 TGah Channel

5-23

In this example the object is configured for a 2 MHz channel bandwidth, short preamble, 2 transmit
antennas, 2 space-time streams, 256 bytes payload, and 64-QAM rate-5/6 (MCS 7).

% Create S1G configuration object for single user S1G short preamble
% transmission with 2 transmit antennas and 2 space-time streams
cfgS1G = wlanS1GConfig;
cfgS1G.ChannelBandwidth = 'CBW2'; % 2 MHz channel bandwidth
cfgS1G.Preamble = 'Short'; % Short preamble
cfgS1G.NumTransmitAntennas = 2; % 2 transmit antennas
cfgS1G.NumSpaceTimeStreams = 2; % 2 space-time streams
cfgS1G.APEPLength = 256; % APEP length in bytes
cfgS1G.MCS = 7; % 64-QAM rate-5/6

Channel Configuration

In this example a TGah N-LOS indoor channel model is used with delay profile Model-B. For Model-B,
when the distance between transmitter and receiver is greater than or equal to 5 meters, the model is
NLOS. This is described further in wlanTGahChannel. A 2x2 MIMO channel is simulated in this
example therefore 2 receive antennas are specified.

% Create and configure the TGah channel
tgahChannel = wlanTGahChannel;
tgahChannel.DelayProfile = 'Model-B';
tgahChannel.NumTransmitAntennas = cfgS1G.NumTransmitAntennas;
tgahChannel.NumReceiveAntennas = 2;
tgahChannel.TransmitReceiveDistance = 5; % Distance in meters for NLOS
tgahChannel.ChannelBandwidth = cfgS1G.ChannelBandwidth;
tgahChannel.LargeScaleFadingEffect = 'None';

Simulation Parameters

For each SNR point in the vector snr a number of packets are generated, passed through a channel
and demodulated to determine the packet error rate.

snr = 25:10:45;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For meaningful results we
recommend increasing the numbers.

maxNumErrors = 1e2; % The maximum number of packet errors at an SNR point
maxNumPackets = 1e3; % Maximum number of packets at an SNR point

Set the remaining variables for the simulation.

% Indices for accessing each field within the time-domain packet
fieldInd = wlanFieldIndices(cfgS1G);

% OFDM information
ofdmInfo = wlanS1GOFDMInfo('S1G-Data',cfgS1G);

5 Propagation Channel Models

5-24

% Set the sampling rate of the channel
tgahChannel.SampleRate = wlanSampleRate(cfgS1G);

if ~strcmp(packetFormat(cfgS1G),'S1G-Short')
 error('This example only supports the S1G-Short packet format');
end

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated. At each SNR
point:

1 Multiple data packets are transmitted through a 2x2 TGah channel with AWGN.
2 Each packet is time synchronized given a known delay.
3 The S1G-LTF1 and S1G-LTF2N fields are demodulated and channel estimation is performed.
4 The S1G-Data field is extracted from the synchronized received waveform and OFDM

demodulated.
5 The data carrying subcarriers are equalized using the channel estimates.
6 The PSDU is recovered using the equalized data subcarriers, noise variance estimate, and

channel state information (CSI).
7 The recovered PSDU of each packet is compared to those transmitted to determine the number

of packet errors and hence the packet error rate.

A parfor loop can be used to parallelize processing of the SNR points, therefore for each SNR point
an AWGN channel is created and configured with comm.AWGNChannel.

packetErrorRate = zeros(numel(snr),1);
%parfor i = 1:numel(snr) % Use 'parfor' to speed up the simulation
for i = 1:numel(snr) % Use 'for' to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = i;
 RandStream.setGlobalStream(stream);

 % Create an instance of the AWGN channel per SNR point simulated
 awgnChannel = comm.AWGNChannel;
 awgnChannel.NoiseMethod = 'Signal to noise ratio (SNR)';
 % Normalization
 awgnChannel.SignalPower = 1/tgahChannel.NumReceiveAntennas;
 % Account for energy in nulls
 awgnChannel.SNR = snr(i)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet for 802.11ah short preamble
 txPSDU = randi([0 1],cfgS1G.PSDULength*8,1);
 txWaveform = wlanWaveformGenerator(txPSDU,cfgS1G);

 % Add trailing zeros to allow for channel delay
 tx = [txWaveform; zeros(50,cfgS1G.NumTransmitAntennas)];

 % Pass through fading indoor TGah channel

 802.11ah Packet Error Rate Simulation for 2x2 TGah Channel

5-25

 reset(tgahChannel); % Reset channel for different realization
 rx = tgahChannel(tx);

 % Add noise
 rx = awgnChannel(rx);

 % Synchronize
 % The received signal is synchronized to the start of the packet by
 % compensating for a known delay and the default OFDM demodulation
 % symbol sampling offset.
 delay = 4;
 rxSync = rx(delay+1:end,:);

 % LTF demodulation and channel estimation
 % Demodulate S1G-LTF1
 rxLTF1 = rxSync(fieldInd.S1GLTF1(1):fieldInd.S1GLTF1(2),:);
 demodLTF1 = wlanS1GDemodulate(rxLTF1,'S1G-LTF1',cfgS1G);

 % If required, demodulate S1G-LTF2N, and perform channel estimation
 if cfgS1G.NumSpaceTimeStreams>1
 % Use S1G-LTF1 and S1G-LTF2N for channel estimation
 rxLTF2N = rxSync(fieldInd.S1GLTF2N(1):fieldInd.S1GLTF2N(2),:);
 demodLTF2N = wlanS1GDemodulate(rxLTF2N,'S1G-LTF2N',cfgS1G);
 chanEst = s1gLTFChannelEstimate([demodLTF1 demodLTF2N],cfgS1G);
 else
 % Use only S1G-LTF1 for channel estimation
 chanEst = s1gLTFChannelEstimate(demodLTF1,cfgS1G);
 end

 % Noise variance estimate from S1G-LTF1 demodulated symbols
 noiseVarEst = helperNoiseEstimate(demodLTF1);

 % Extract S1G-Data field
 rxData = rxSync(fieldInd.S1GData(1):fieldInd.S1GData(2),:);

 % OFDM demodulation
 demodSym = wlanS1GDemodulate(rxData,'S1G-Data',cfgS1G);

 % Extract data subcarriers from demodulated symbols and channel
 % estimate
 demodDataSym = demodSym(ofdmInfo.DataIndices,:,:);
 chanEstData = chanEst(ofdmInfo.DataIndices,:,:);

 % MMSE frequency domain equalization
 [eqDataSym,csi] = helperSymbolEqualize(demodDataSym,chanEstData,noiseVarEst);

 % Recover PSDU bits
 rxPSDU = s1gDataBitRecover(eqDataSym,noiseVarEst,csi,cfgS1G);

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(txPSDU,rxPSDU));
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Compute PER for this SNR point
 packetErrorRate(i) = numPacketErrors/(numPkt-1);
 disp(['SNR ' num2str(snr(i))...

5 Propagation Channel Models

5-26

 ' completed after ' num2str(numPkt-1) ' packets,'...
 ' PER: ' num2str(packetErrorRate(i))]);
end

SNR 25 completed after 123 packets, PER: 0.82114
SNR 35 completed after 922 packets, PER: 0.10954
SNR 45 completed after 1000 packets, PER: 0.013

Plot Packet Error Rate vs SNR Results

figure;
semilogy(snr,packetErrorRate,'-ob');
grid on;
xlabel('SNR (dB)');
ylabel('PER');
title(['802.11ah ' cfgS1G.Preamble ', ' num2str(cfgS1G.ChannelBandwidth(4:end)) ...
 'MHz, MCS' num2str(cfgS1G.MCS) ', ' ...
 num2str(tgahChannel.NumTransmitAntennas) 'x' num2str(tgahChannel.NumReceiveAntennas) ...
 ' TGah Channel ' num2str(tgahChannel.DelayProfile)]);

Further Exploration

The number of packets tested at each SNR point is controlled by two parameters: maxNumErrors
and maxNumPackets. For meaningful results, these values should be larger than those presented in
this example. As an example, the figure below was created by running a longer simulation with
maxNumErrors = 1e3 and maxNumPackets = 1e4, and the SNR range snr = 20:8:60.

 802.11ah Packet Error Rate Simulation for 2x2 TGah Channel

5-27

Appendix

This example uses the following helper functions:

• helperNoiseEstimate.m
• helperSymbolEqualize.m
• s1gDataBitRecover.m
• s1gLTFChannelEstimate.m

Selected Bibliography

1 IEEE P802.11ah™ D5.0 IEEE Draft Standard for Information technology - Telecommunications
and information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 2: Sub 1 GHz License Exempt Operation.

5 Propagation Channel Models

5-28

Delay Profile and Fluorescent Lighting Effects
This example demonstrates the impact of changing the TGac delay profile, and it shows how
fluorescent lighting affects the time response of the channel.

Delay Profile Effects

Create VHT configuration object. Set the sample rate to 80 MHz.

cfgVHT = wlanVHTConfig;
fs = 80e6;

Generate random binary data and create a transmit waveform parameterized by the VHT
configuration object.

d = randi([0 1],8*cfgVHT.PSDULength,1);
testWaveform = wlanWaveformGenerator(d,cfgVHT);

Create a TGac channel object. Set the delay profile to 'Model-A', which corresponds to flat fading.
Disable large-scale fading effects.

tgacChan = wlanTGacChannel('SampleRate',fs, ...
 'ChannelBandwidth',cfgVHT.ChannelBandwidth, ...
 'DelayProfile','Model-A', ...
 'LargeScaleFadingEffect','None');

Pass the transmitted waveform through the TGac channel.

rxModelA = tgacChan(testWaveform);

Set the delay profile to Model-C, which corresponds to a multipath channel with 14 distinct paths and
a 30 ns RMS delay spread. The maximum delay spread is 200 ns, which corresponds to a coherence
bandwidth of 2.5 MHz.

release(tgacChan)
tgacChan.DelayProfile = 'Model-C';

Pass the waveform through the model-C channel.

rxModelC = tgacChan(testWaveform);

Create a spectrum analyzer and use it to visualize the spectrum of the received signals.

saScope = dsp.SpectrumAnalyzer('SampleRate',fs, ...
 'ShowLegend',true,'ChannelNames',{'Model-A','Model-C'}, ...
 'AveragingMethod','Exponential','ForgettingFactor',0.99);
saScope([rxModelA rxModelC])

 Delay Profile and Fluorescent Lighting Effects

5-29

As expected, the frequency response of the model-A signal is flat across the 80 MHz bandwidth.
Conversely, the model-C frequency response varies because its coherence bandwidth is much smaller
than the channel bandwidth.

Fluorescent Effects

Release the TGac channel, and set its delay profile to 'Model-D'. Disable the fluorescent lighting
effect.

release(tgacChan)
tgacChan.DelayProfile = 'Model-D';
tgacChan.FluorescentEffect = false;

To better illustrate the Doppler effects of fluorescent lighting, change the bandwidth and sample rate
of the channel. Generate a test waveform of ones.

tgacChan.ChannelBandwidth = 'CBW20';
fs = 20e6;
tgacChan.SampleRate = fs;
testWaveform = ones(5e5,1);

To ensure repeatability, set the global random number generator to a fixed value.

rng(37)

5 Propagation Channel Models

5-30

Pass the waveform through the TGac channel.

rxSig0 = tgacChan(testWaveform);

Enable the fluorescent lighting effect. Reset the random number generator, and pass the waveform
through the channel.

release(tgacChan)
tgacChan.FluorescentEffect = true;
rng(37)
rxSig1 = tgacChan(testWaveform);

Determine the time axis and channel filter delay.

t = ((1:size(rxSig0,1))'-1)/fs;
fDelay = tgacChan.info.ChannelFilterDelay;

Plot the magnitude of the received signals while accounting for the channel filter delay.

plot(t(fDelay+1:end),[abs(rxSig0(fDelay+1:end)) abs(rxSig1(fDelay+1:end))])
xlabel('Time (s)')
ylabel('Magnitude (V)')
legend('Fluorescent Off','Fluorescent On','location','best')

Fluorescent lighting introduces a Doppler component at twice the power line frequency (120 Hz in
the U.S.).

 Delay Profile and Fluorescent Lighting Effects

5-31

Confirm that the peaks are separated by approximately 0.0083 s (inverse of 120 Hz) by measuring
distance between the second and third peaks.

[~,loc] = findpeaks(abs(rxSig1(1e5:4e5)));
peakTimes = loc/fs;
peakSeparation = diff(peakTimes)

peakSeparation = 0.0085

5 Propagation Channel Models

5-32

End-to-End Simulation

6

802.11ax Packet Error Rate Simulation for Single-User Format
This example shows how to measure the packet error rate of an IEEE® 802.11ax™ high efficiency
(HE) single user format link.

Introduction

In this example, an end-to-end simulation is used to determine the packet error rate for an 802.11ax
[1] single user format link for a selection of SNR points. At each SNR point, multiple packets are
transmitted through a noisy TGax indoor channel, demodulated and the PSDUs recovered. The
PSDUs are compared to those transmitted to determine the packet error rate. The processing for
each packet is summarized in the following diagram.

Waveform Configuration

An HE single user (SU) packet is a full-band transmission to a single user. The transmit parameters
for the HE SU format are configured using an wlanHESUConfig object. The properties of the object
contain the configuration. In this example, the object is configured for a 20 MHz channel bandwidth,
2 transmit antennas, 2 space-time streams, no space time block coding and 16-QAM rate-1/2 (MCS 3).

cfgHE = wlanHESUConfig;
cfgHE.ChannelBandwidth = 'CBW20'; % Channel bandwidth
cfgHE.NumSpaceTimeStreams = 2; % Number of space-time streams
cfgHE.NumTransmitAntennas = 2; % Number of transmit antennas
cfgHE.APEPLength = 1e3; % Payload length in bytes
cfgHE.ExtendedRange = false; % Do not use extended range format
cfgHE.Upper106ToneRU = false; % Do not use upper 106 tone RU
cfgHE.PreHESpatialMapping = false; % Spatial mapping of pre-HE fields
cfgHE.GuardInterval = 0.8; % Guard interval duration
cfgHE.HELTFType = 4; % HE-LTF compression mode
cfgHE.ChannelCoding = 'LDPC'; % Channel coding
cfgHE.MCS = 3; % Modulation and coding scheme

6 End-to-End Simulation

6-2

Channel Configuration

In this example, a TGax NLOS indoor channel model is used with delay profile Model-B. Model-B is
considered NLOS when the distance between transmitter and receiver is greater than or equal to 5
meters. This is described further in wlanTGaxChannel. A 2x2 MIMO channel is simulated in this
example.

% Create and configure the TGax channel
chanBW = cfgHE.ChannelBandwidth;
tgaxChannel = wlanTGaxChannel;
tgaxChannel.DelayProfile = 'Model-B';
tgaxChannel.NumTransmitAntennas = cfgHE.NumTransmitAntennas;
tgaxChannel.NumReceiveAntennas = 2;
tgaxChannel.TransmitReceiveDistance = 5; % Distance in meters for NLOS
tgaxChannel.ChannelBandwidth = chanBW;
tgaxChannel.LargeScaleFadingEffect = 'None';
fs = wlanSampleRate(cfgHE);
tgaxChannel.SampleRate = fs;

Simulation Parameters

For each SNR point (dB) in the snr vector a number of packets are generated, passed through a
channel and demodulated to determine the packet error rate.

snr = 10:5:35;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For statistically meaningful
results we recommend increasing these numbers.

maxNumErrors = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % The Maximum number of packets at an SNR point

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated. The pre-HE
preamble of 802.11ax is backwards compatible with 802.11ac™, therefore in this example the front-
end synchronization components for a VHT waveform are used to synchronize the HE waveform at
the receiver. For each packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through an indoor TGax channel model. Different channel realizations

are modeled for different packets.
3 AWGN is added to the received waveform to create the desired average SNR per subcarrier after

OFDM demodulation. The comm.AWGNChannel object is configured to provide the correct SNR.
The configuration accounts for normalization within the channel by the number of receive
antennas, and the noise energy in unused subcarriers which are removed during OFDM
demodulation.

 802.11ax Packet Error Rate Simulation for Single-User Format

6-3

4 The packet is detected.
5 Coarse carrier frequency offset is estimated and corrected.
6 Fine timing synchronization is established. The L-STF, L-LTF and L-SIG samples are provided for

fine timing to allow for packet detection at the start or end of the L-STF.
7 Fine carrier frequency offset is estimated and corrected.
8 The HE-LTF is extracted from the synchronized received waveform. The HE-LTF is OFDM

demodulated and channel estimation is performed.
9 The data field is extracted from the synchronized received waveform and OFDM demodulated.
10 Common phase error pilot tracking is performed to track any residual carrier frequency offset.
11 Noise estimation is performed using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers.
12 The phase corrected OFDM symbols are equalized with the channel estimate.
13 The equalized symbols are demodulated and decoded to recover the PSDU.

A parfor loop can be used to parallelize processing of the SNR points, therefore for each SNR point
an AWGN channel is created and configured by using the comm.AWGNChannel object. To enable the
use of parallel computing for increased speed comment out the 'for' statement and uncomment the
'parfor' statement below.

numSNR = numel(snr); % Number of SNR points
packetErrorRate = zeros(1,numSNR);

% Get occupied subcarrier indices and OFDM parameters
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgHE);

% Indices to extract fields from the PPDU
ind = wlanFieldIndices(cfgHE);

%parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
for isnr = 1:numSNR
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',99);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Create an instance of the AWGN channel per SNR point simulated
 awgnChannel = comm.AWGNChannel;
 awgnChannel.NoiseMethod = 'Signal to noise ratio (SNR)';
 awgnChannel.SignalPower = 1/tgaxChannel.NumReceiveAntennas;
 % Account for noise energy in nulls so the SNR is defined per
 % active subcarrier
 awgnChannel.SNR = snr(isnr)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet with random PSDU
 psduLength = getPSDULength(cfgHE); % PSDU length in bytes
 txPSDU = randi([0 1],psduLength*8,1);
 tx = wlanWaveformGenerator(txPSDU,cfgHE);

6 End-to-End Simulation

6-4

 % Add trailing zeros to allow for channel delay
 txPad = [tx; zeros(50,cfgHE.NumTransmitAntennas)];

 % Pass through a fading indoor TGax channel
 reset(tgaxChannel); % Reset channel for different realization
 rx = tgaxChannel(txPad);

 % Pass the waveform through AWGN channel
 rx = awgnChannel(rx);

 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rx,chanBW);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-STF and perform coarse frequency offset correction
 lstf = rx(coarsePktOffset+(ind.LSTF(1):ind.LSTF(2)),:);
 coarseFreqOff = wlanCoarseCFOEstimate(lstf,chanBW);
 rx = helperFrequencyOffset(rx,fs,-coarseFreqOff);

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rx(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,chanBW);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected outwith the range of expected delays from
 % the channel modeling; packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-LTF and perform fine frequency offset correction
 rxLLTF = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
 fineFreqOff = wlanFineCFOEstimate(rxLLTF,chanBW);
 rx = helperFrequencyOffset(rx,fs,-fineFreqOff);

 % HE-LTF demodulation and channel estimation
 rxHELTF = rx(pktOffset+(ind.HELTF(1):ind.HELTF(2)),:);
 heltfDemod = wlanHEDemodulate(rxHELTF,'HE-LTF',cfgHE);
 [chanEst,pilotEst] = heLTFChannelEstimate(heltfDemod,cfgHE);

 % Data demodulate
 rxData = rx(pktOffset+(ind.HEData(1):ind.HEData(2)),:);
 demodSym = wlanHEDemodulate(rxData,'HE-Data',cfgHE);

 % Pilot phase tracking
 demodSym = heCommonPhaseErrorTracking(demodSym,chanEst,cfgHE);

 % Estimate noise power in HE fields
 nVarEst = heNoiseEstimate(demodSym(ofdmInfo.PilotIndices,:,:),pilotEst,cfgHE);

 802.11ax Packet Error Rate Simulation for Single-User Format

6-5

 % Extract data subcarriers from demodulated symbols and channel
 % estimate
 demodDataSym = demodSym(ofdmInfo.DataIndices,:,:);
 chanEstData = chanEst(ofdmInfo.DataIndices,:,:);

 % Equalization and STBC combining
 [eqDataSym,csi] = heEqualizeCombine(demodDataSym,chanEstData,nVarEst,cfgHE);

 % Recover data
 rxPSDU = wlanHEDataBitRecover(eqDataSym,nVarEst,csi,cfgHE,'LDPCDecodingMethod','layered-bp');

 % Determine if any bits are in error, i.e. a packet error
 packetError = ~isequal(txPSDU,rxPSDU);
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(isnr) = numPacketErrors/(numPkt-1);
 disp(['MCS ' num2str(cfgHE.MCS) ','...
 ' SNR ' num2str(snr(isnr)) ...
 ' completed after ' num2str(numPkt-1) ' packets,'...
 ' PER:' num2str(packetErrorRate(isnr))]);
end

MCS 3, SNR 10 completed after 11 packets, PER:1
MCS 3, SNR 15 completed after 17 packets, PER:0.64706
MCS 3, SNR 20 completed after 52 packets, PER:0.21154
MCS 3, SNR 25 completed after 100 packets, PER:0.02
MCS 3, SNR 30 completed after 100 packets, PER:0
MCS 3, SNR 35 completed after 100 packets, PER:0

Plot Packet Error Rate vs SNR

figure;
semilogy(snr,packetErrorRate,'-*');
hold on;
grid on;
xlabel('SNR (dB)');
ylabel('PER');
dataStr = arrayfun(@(x)sprintf('MCS %d',x),cfgHE.MCS,'UniformOutput',false);
legend(dataStr);
title(sprintf('PER for HE Channel %s, %s, %s, PSDULength: %d',tgaxChannel.DelayProfile,cfgHE.ChannelBandwidth,cfgHE.ChannelCoding,cfgHE.APEPLength));

6 End-to-End Simulation

6-6

The number of packets tested at each SNR point is controlled by two parameters: maxNumErrors
and maxNumPackets. For meaningful results, these values should be larger than those presented in
this example. As an example, the figure below was created by running a longer simulation with
maxNumErrors:1e3 and maxNumPackets:1e4.

 802.11ax Packet Error Rate Simulation for Single-User Format

6-7

Appendix

This example uses the following helper functions:

• heCommonPhaseErrorTracking.m
• heEqualizeCombine.m
• helperFrequencyOffset.m
• heLTFChannelEstimate.m
• heNoiseEstimate.m

Selected Bibliography

1 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

6 End-to-End Simulation

6-8

802.11ax Downlink OFDMA and Multi-User MIMO Throughput
Simulation

This example shows the transmit and receive processing for an IEEE® 802.11ax™ multi-user
downlink transmission over a TGax indoor fading channel. Three transmission modes are simulated:
OFDMA, MU-MIMO, and a combination of OFDMA and MU-MIMO.

Introduction

This example simulates a scenario of an access point (AP) transmitting to four stations (STAs)
simultaneously using high efficiency (HE) multi-user (MU) format packets as specified in IEEE
P802.11ax™/D4.1 [1].

The HE multi-user format can be configured for an OFDMA transmission, a MU-MIMO transmission,
or a combination of the two. This flexibility allows an HE-MU packet to transmit to a single user over
the whole band, multiple users over different parts of the band (OFDMA), or multiple users over the
same part of the band (MU-MIMO).

Three transmission modes are compared for the multi-user downlink scenario:

1 OFDMA - each of the four users is assigned a separate resource unit (RU) and the transmission is
beamformed.

2 MU-MIMO - all four users share the full band.
3 Mixed MU-MIMO and OFDMA - Two users share a single RU in a MU-MIMO configuration, and

the remaining two users are assigned a single RU each.

For a detailed overview of 802.11ax formats, see the “802.11ax Parameterization for Waveform
Generation and Simulation” on page 1-24 example.

For each transmission mode, the AP transmits a burst of 10 packets, and each STA demodulates and
decodes the data intended for it. An evolving TGax indoor MIMO channel with AWGN is modeled
between the AP and each STA. The raw AP throughput is provided as a metric to compare the
transmission modes and is calculated by counting the number of packets transmitted successfully to
all STAs. The simulation is repeated for different path losses. In this example, all the transmissions

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-9

are beamformed. Therefore, before simulating the data transmission, the channel between the AP and
each station is sounded under perfect conditions to obtain channel state information.

Transmission Configuration

An wlanHEMUConfig object is used to configure the transmission of an HE-MU packet. Three
transmission configuration objects are specified to define the three different AP transmissions:

1 cfgMUMIMO is a MU-MIMO configuration which consists of a single 242-tone RU with 4 users.
Each user has one space-time stream.

2 cfgOFDMA is an OFDMA configuration which consists of four 52-tone RUs, each with one user.
Each user has two space-time streams.

3 cfgMixed is a mixed OFDMA and MU-MIMO configuration which consists of one 106-tone RU
shared by two users, and two 52-tone RUs, each with one user. The MU-MIMO users each have
one space-time stream, and the OFDMA users each have two space-time streams.

A 20 MHz channel bandwidth is used for all transmissions. Other transmission parameters such as
the APEPLength and MCS are the same for all users in all configurations.

First, the MU-MIMO configuration is defined. The allocation index 195 defines a single 242-tone RU,
with four users in MU-MIMO. For a description of selecting an allocation index, see the “802.11ax
Parameterization for Waveform Generation and Simulation” on page 1-24 example.

% MU-MIMO configuration - 4 users on one 242-tone RU
cfgMUMIMO = wlanHEMUConfig(195);

The allocation plot shows a single RU is assigned to all four users.

showAllocation(cfgMUMIMO);

6 End-to-End Simulation

6-10

The transmission parameters for each user are now configured.

numTx = 6; % Number of transmit antennas
guardInterval = 0.8; % Guard interval in Microseconds

% Configure common parameters for all users
cfgMUMIMO.NumTransmitAntennas = numTx;
cfgMUMIMO.GuardInterval = guardInterval;

% Configure per user parameters
% STA #1
cfgMUMIMO.User{1}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{1}.MCS = 4;
cfgMUMIMO.User{1}.APEPLength = 1000;
% STA #2
cfgMUMIMO.User{2}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{2}.MCS = 4;
cfgMUMIMO.User{2}.APEPLength = 1000;
% STA #3
cfgMUMIMO.User{3}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{3}.MCS = 4;
cfgMUMIMO.User{3}.APEPLength = 1000;
% STA #4
cfgMUMIMO.User{4}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{4}.MCS = 4;
cfgMUMIMO.User{4}.APEPLength = 1000;

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-11

Next the OFDMA configuration is defined. The allocation index 112 defines four 52-tone RUs, each
serving a single user.

% OFDMA configuration - 4 users, each on a 52-tone RU
cfgOFDMA = wlanHEMUConfig(112);

The allocation plot shows the four RUs, each with a single user. When comparing this allocation plot
to the full band MU-MIMO plot, it is apparent that the total number of subcarriers used (4x52 = 208
subcarriers) is less than the MU-MIMO allocation (242 subcarriers). The fewer number of subcarriers
allow guards between each OFDMA user.

showAllocation(cfgOFDMA);

The transmission parameters for each user are now configured.

% Configure common parameters for all users
cfgOFDMA.NumTransmitAntennas = numTx;
cfgOFDMA.GuardInterval = guardInterval;

% Configure per user parameters
% STA #1 (RU #1)
cfgOFDMA.User{1}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{1}.MCS = 4;
cfgOFDMA.User{1}.APEPLength = 1000;
% STA #2 (RU #2)
cfgOFDMA.User{2}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{2}.MCS = 4;

6 End-to-End Simulation

6-12

cfgOFDMA.User{2}.APEPLength = 1000;
% STA #3 (RU #3)
cfgOFDMA.User{3}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{3}.MCS = 4;
cfgOFDMA.User{3}.APEPLength = 1000;
% STA #4 (RU #4)
cfgOFDMA.User{4}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{4}.MCS = 4;
cfgOFDMA.User{4}.APEPLength = 1000;

Finally, the mixed MU-MIMO and OFDMA configuration is defined. The allocation index 25 defines a
106-tone RU with two users, and two 52-tone RUs, each with one user.

% Mixed OFDMA and MU-MIMO configuration
cfgMixed = wlanHEMUConfig(25);

The allocation plot shows the three RUs, one with 2 users (MU-MIMO), and the others with one user
each (OFDMA).

showAllocation(cfgMixed);

The transmission parameters for each user are now configured.

% Configure common parameters for all users
cfgMixed.NumTransmitAntennas = numTx;
cfgMixed.GuardInterval = guardInterval;

% Configure per user parameters

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-13

% RU #1 has two users (MU-MIMO) and a total of 2 STS (1 per user)
% STA #1 (RU #1)
cfgMixed.User{1}.NumSpaceTimeStreams = 1;
cfgMixed.User{1}.MCS = 4;
cfgMixed.User{1}.APEPLength = 1000;
% STA #2 (RU #1)
cfgMixed.User{2}.NumSpaceTimeStreams = 1;
cfgMixed.User{2}.MCS = 4;
cfgMixed.User{2}.APEPLength = 1000;

% The remaining two users are OFDMA
% STA #3 (RU #2)
cfgMixed.User{3}.NumSpaceTimeStreams = 2;
cfgMixed.User{3}.MCS = 4;
cfgMixed.User{3}.APEPLength = 1000;
% STA #4 (RU #3)
cfgMixed.User{4}.NumSpaceTimeStreams = 2;
cfgMixed.User{4}.MCS = 4;
cfgMixed.User{4}.APEPLength = 1000;

Channel Model Configuration

A TGax indoor channel model is used in this example. An individual channel is used to simulate the
link between the AP and each user. A TGax channel object, tgaxBase is created with properties
relevant for all users. In this example, the delay profile (Model-D) and number of receive antennas
are common for all users. Model-D is considered non-line of sight when the distance between
transmitter and receiver is greater than or equal to 10 meters. This is described further in
wlanTGaxChannel. A fixed seed is used for the channel to allow repeatability.

% Create channel configuration common for all users
tgaxBase = wlanTGaxChannel;
tgaxBase.DelayProfile = 'Model-D'; % Delay profile
tgaxBase.NumTransmitAntennas = numTx; % Number of transmit antennas
tgaxBase.NumReceiveAntennas = 2; % Each user has two receive antennas
tgaxBase.TransmitReceiveDistance = 10; % Non-line of sight distance
tgaxBase.ChannelBandwidth = cfgMUMIMO.ChannelBandwidth;
tgaxBase.SampleRate = wlanSampleRate(cfgMUMIMO);
% Set a fixed seed for the channel
tgaxBase.RandomStream = 'mt19937ar with seed';
tgaxBase.Seed = 5;

Next a channel is created for each user. The channel for each user is a clone of the tgaxBase, but
with a unique UserIndex property, and is stored in a cell array tgax. The UserIndex property of
each individual channel is set to provide a unique channel for each user. The resultant channels are
used in the simulation as shown below.

6 End-to-End Simulation

6-14

% A cell array stores the channel objects, one per user
numUsers = numel(cfgMixed.User); % Number of users simulated in this example
tgax = cell(1,numUsers);

% Generate per-user channels
for userIdx = 1:numUsers
 tgax{userIdx} = clone(tgaxBase);
 tgax{userIdx}.UserIndex = userIdx; % Set unique user index
end

Beamforming Feedback

Transmit beamforming for both OFDMA and MU-MIMO relies on knowledge of the channel state
between transmitter and receiver at the beamformer. Feedback of the per-subcarrier channel state is
provided by each STA by channel sounding. A null data packet (NDP) is transmitted by the AP, and
each STA uses this packet to determine the channel state. The channel state is then fed-back to the
AP. The same process is used for 802.11ac™ in the “802.11ac Transmit Beamforming” on page 3-21
and “802.11ac Multi-User MIMO Precoding” on page 1-53 examples, but an HE single user NDP
packet is used instead of a VHT packet. In this example, the feedback is considered perfect; there is
no noise present for channel sounding and the feedback is uncompressed. The
heUserBeamformingFeedback helper function detects the NDP and uses channel estimation to
determine the channel state information. Singular value decomposition (SVD) is then used to
calculate the beamforming feedback.

% Create an NDP with the correct number of space-time streams to generate
% enough LTF symbols
cfgNDP = wlanHESUConfig('APEPLength',0,'GuardInterval',0.8); % No data in an NDP
cfgNDP.ChannelBandwidth = tgaxBase.ChannelBandwidth;
cfgNDP.NumTransmitAntennas = cfgMUMIMO.NumTransmitAntennas;
cfgNDP.NumSpaceTimeStreams = cfgMUMIMO.NumTransmitAntennas;

% Generate NDP packet - with an empty PSDU as no data
txNDP = wlanWaveformGenerator([],cfgNDP);

% For each user STA, pass the NDP packet through the channel and calculate
% the feedback channel state matrix by SVD.
staFeedback = cell(1,numUsers);
for userIdx = 1:numel(tgax)

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-15

 % Received waveform at user STA with 50 sample padding. No noise.
 rx = tgax{userIdx}([txNDP; zeros(50,size(txNDP,2))]);

 % Get the full-band beamforming feedback for a user
 staFeedback{userIdx} = heUserBeamformingFeedback(rx,cfgNDP);
end

Simulation Parameters

Different path losses are simulated in this example. The same path loss and noise floor is applied to
all users. For each path loss simulated, 10 packets are passed through the channel. Packets are
separated by 20 microseconds.

cfgSim = struct;
cfgSim.NumPackets = 10; % Number of packets to simulate for each path loss
cfgSim.Pathloss = (96:3:105); % Path losses to simulate in dB
cfgSim.TransmitPower = 30; % AP transmit power in dBm
cfgSim.NoiseFloor = -89.9; % STA noise floor in dBm
cfgSim.IdleTime = 20; % Idle time between packets in us

Simulation with OFDMA

The scenario is first simulated with the OFDMA configuration and transmit beamforming.

The steering matrix for each RU is calculated using the feedback from the STAs. The
heMUCalculateSteeringMatrix helper function calculates the beamforming matrix for an RU
given the CSI feedback.

% For each RU, calculate the steering matrix to apply
for ruIdx = 1:numel(cfgOFDMA.RU)
 % Calculate the steering matrix to apply to the RU given the feedback
 steeringMatrix = heMUCalculateSteeringMatrix(staFeedback,cfgOFDMA,cfgNDP,ruIdx);

 % Apply the steering matrix to each RU
 cfgOFDMA.RU{ruIdx}.SpatialMapping = 'Custom';
 cfgOFDMA.RU{ruIdx}.SpatialMappingMatrix = steeringMatrix;
end

The heMUSimulateScenario helper function performs the simulation. The pre-HE preamble of
802.11ax is backwards compatible with 802.11ac, therefore in this example the front-end
synchronization components for a VHT waveform are used to synchronize the HE waveform at each
STA. For each packet and path loss simulated the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through an evolving TGax channel model and AWGN is added to the

received waveform. The channel state is maintained between packets.
3 The packet is detected.
4 Coarse carrier frequency offset is estimated and corrected.
5 Fine timing synchronization is established.
6 Fine carrier frequency offset is estimated and corrected.
7 The HE-LTF is extracted from the synchronized received waveform. The HE-LTF is OFDM

demodulated and channel estimation is performed.
8 The HE Data field is extracted from the synchronized received waveform and OFDM

demodulated.

6 End-to-End Simulation

6-16

9 Common pilot phase tracking is performed to track any residual carrier frequency offset.
10 The phase corrected OFDM symbols are equalized with the channel estimate.
11 Noise estimation is performed using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers.
12 The equalized symbols are demodulated and decoded to recover the PSDU.
13 The recovered PSDU is compared to the transmitted PSDU to determine if the packet has been

recovered successfully.

The simulation is run for the OFDMA configuration.

disp('Simulating OFDMA...');
throughputOFDMA = heMUSimulateScenario(cfgOFDMA,tgax,cfgSim);

Simulating OFDMA...
 Pathloss 96.0 dB, AP throughput 66.1 Mbps
 Pathloss 99.0 dB, AP throughput 66.1 Mbps
 Pathloss 102.0 dB, AP throughput 49.6 Mbps
 Pathloss 105.0 dB, AP throughput 16.5 Mbps

Simulation with MU-MIMO

Now the scenario is simulated with the MU-MIMO configuration. The
heMUCalculateSteeringMatrix helper function calculates the beamforming matrix for an RU
given the CSI feedback for all users in the MU-MIMO allocation. A zero forcing solution is used to
calculate the steering matrix within the helper function.

% Calculate the steering matrix to apply to the RU given the feedback
ruIdx = 1; % Index of the one and only RU
steeringMatrix = heMUCalculateSteeringMatrix(staFeedback,cfgMUMIMO,cfgNDP,ruIdx);

% Apply the steering matrix to the RU
cfgMUMIMO.RU{1}.SpatialMapping = 'Custom';
cfgMUMIMO.RU{1}.SpatialMappingMatrix = steeringMatrix;

Run the simulation for the MU-MIMO configuration.

disp('Simulating MU-MIMO...');
throughputMUMIMO = heMUSimulateScenario(cfgMUMIMO,tgax,cfgSim);

Simulating MU-MIMO...
 Pathloss 96.0 dB, AP throughput 110.5 Mbps
 Pathloss 99.0 dB, AP throughput 110.5 Mbps
 Pathloss 102.0 dB, AP throughput 71.8 Mbps
 Pathloss 105.0 dB, AP throughput 0.0 Mbps

Simulation with Combined MU-MIMO and OFDMA

Finally, the scenario is simulated with the combined MU-MIMO and OFDMA configuration.

The steering matrix for each RU is calculated using the feedback from the STAs, including the MU-
MIMO RU. The heMUCalculateSteeringMatrix helper function calculates the beamforming
matrix for an RU given the CSI feedback.

% For each RU calculate the steering matrix to apply
for ruIdx = 1:numel(cfgMixed.RU)
 % Calculate the steering matrix to apply to the RU given the feedback

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-17

 steeringMatrix = heMUCalculateSteeringMatrix(staFeedback,cfgMixed,cfgNDP,ruIdx);

 % Apply the steering matrix to each RU
 cfgMixed.RU{ruIdx}.SpatialMapping = 'Custom';
 cfgMixed.RU{ruIdx}.SpatialMappingMatrix = steeringMatrix;
end

Run the simulation for the combined MU-MIMO and OFDMA configuration.

disp('Simulating Mixed MU-MIMO and OFDMA...');
throughputMixed = heMUSimulateScenario(cfgMixed,tgax,cfgSim);

Simulating Mixed MU-MIMO and OFDMA...
 Pathloss 96.0 dB, AP throughput 66.1 Mbps
 Pathloss 99.0 dB, AP throughput 66.1 Mbps
 Pathloss 102.0 dB, AP throughput 66.1 Mbps
 Pathloss 105.0 dB, AP throughput 47.9 Mbps

Plot Results

The raw AP throughput for each transmission mode is plotted. The results show for this channel
realization at high SNRs (low pathloss) the throughput provided by the MU-MIMO configuration
exceeds OFDMA configuration. The packet duration of the MU-MIMO configuration is roughly half
that of the OFDMA configuration which provides the throughput gain. As the SNR decreases, the
noise dominates and transmit beamforming with OFDMA becomes more effective. The performance
of the combined MU-MIMO and OFDMA configuration follow a similar trend to the OFDMA
configuration as the packet duration is the same. The performance differs due to different RU sizes
and number of space-time streams.

% Sum throughput for all STAs and plot for all configurations
figure;
plot(cfgSim.Pathloss,sum(throughputOFDMA,2),'-x');
hold on;
plot(cfgSim.Pathloss,sum(throughputMUMIMO,2),'-o');
plot(cfgSim.Pathloss,sum(throughputMixed,2),'-s');
grid on;
xlabel('Pathloss (dB)');
ylabel('Throughput (Mbps)');
legend('OFDMA','MU-MIMO','MU-MIMO & OFDMA');
title('Raw AP Throughput');

6 End-to-End Simulation

6-18

Appendix

This example uses these helper functions.

• heCommonPhaseErrorTracking.m
• heEqualizeCombine.m
• helperFrequencyOffset.m
• heLTFChannelEstimate.m
• heMUCalculateSteeringMatrix.m
• heMUSimulateScenario.m
• heNoiseEstimate.m
• heUserBeamformingFeedback.m

Selected Bibliography

1 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-19

802.11ax Packet Error Rate Simulation for Uplink Trigger-
Based Format

This example shows how to measure the packet error rate of an IEEE® 802.11ax™ high efficiency
(HE) uplink, trigger-based (TB) format.

Introduction

The 802.11ax [1] HE trigger-based (HE TB) format allows for OFDMA or MU-MIMO transmission in
the uplink. An HE TB transmission is controlled entirely by an access point (AP). All the parameters
required for the transmission are provided in a trigger frame to all STAs participating in the HE TB
transmission. Each station (STA) transmits an HE TB packet simultaneously, when triggered by the
AP as shown in the following diagram.

In this example an end-to-end simulation is used to determine the packet error rate of an HE TB link
for four STAs in a MU-MIMO configuration. At each SNR point multiple packets are transmitted with
no impairments apart from channel and noise. The received packets are demodulated and the PSDUs
recovered for each STA. The PSDUs are compared to those transmitted to determine the number of
packet errors and hence the packet error rate for all users. Packet detection, timing synchronization
and symbol equalization is performed by the receiver. No frequency offset correction is performed in
this example. The processing of HE TB processing chain is shown in the following diagram.

6 End-to-End Simulation

6-20

The receiver performs a minimum-mean-square-error-based ordered successive interference
cancellation (MMSE-SIC) process for data equalization [2]. To avoid error propagation in the
cancellation stage, data streams for all STAs are sorted in descending order based on the channel
state information and equalized sequentially. This diagram shows the procedure of MMSE-SIC
equalization.

Equalization Method

In this example, you can specify the equalization method as 'mmse' or 'mmse-sic'. The default
equalizer is 'mmse-sic'.

equalizationMethod = 'mmse-sic';

User Configuration

In this example the allocation information and transmit parameters for multiple uplink STAs are
configured using an heTBSystemConfig object.

allocationIndex = 195; % Four uplink users in a MU-MIMO configuration
cfgSys = heTBSystemConfig(allocationIndex);

In a trigger-based transmission some parameters are the same for all uplink users, while some can
differ. The User property of cfgSys contains a cell array of user configurations. Each element of the
cell array is an object which can be configured to set the parameters of individual users. In this
example, all users have the same transmission parameters.

% These parameters are same for all users in the MU-MIMO system
cfgSys.HELTFType = 4; % HE-LTF compression mode
cfgSys.GuardInterval = 3.2; % Guard interval type
cfgSys.SingleStreamPilots = 1; % Single stream pilot transmission of HE-LTF
numRx = 8; % Number of receive(AP) antennas

% The individual parameters for each user are specified below
allocInfo = ruInfo(cfgSys);
numUsers = allocInfo.NumUsers; % Number of uplink users

for userIdx = 1:numUsers
 cfgSys.User{userIdx}.NumTransmitAntennas = 1;
 cfgSys.User{userIdx}.NumSpaceTimeStreams = 1;

 802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format

6-21

 cfgSys.User{userIdx}.SpatialMapping = 'Direct';
 cfgSys.User{userIdx}.MCS = 7;
 cfgSys.User{userIdx}.APEPLength = 1e3;
 cfgSys.User{userIdx}.ChannelCoding = 'LDPC';
end

A trigger-based transmission for a single user within the system is configured with an
wlanHETBConfig object. The transmission configurations for all users are generated using the
method getUserConfig. A cell array of four HE TB objects is created to describe the transmission of
four users.

cfgTB = getUserConfig(cfgSys);

Simulation Parameters

For each SNR point (dB) in the snr vector a number of packets are generated, passed through a
channel and demodulated to determine the packet error rate.

snr = 20:2:24;

% The sample rate and field indices for the HE TB packet is same for all
% users. Here the trigger configuration of the first user is used to get
% the sample rate and field indices of the HE TB PPDU.
fs = wlanSampleRate(cfgTB{1}); % Same for all users
ind = wlanFieldIndices(cfgTB{1}); % Same for all users

Channel Configuration

In this example, a TGax NLOS indoor channel model is used with delay profile Model-B. Model-B is
considered NLOS when the distance between the transmitter and receiver is greater than or equal to
5 meters. This is described further in wlanTGaxChannel. In this example all the STAs are assumed
to be at the same distance from the AP.

tgaxBase = wlanTGaxChannel;
tgaxBase.SampleRate = fs;
tgaxBase.TransmissionDirection = 'Uplink';
tgaxBase.TransmitReceiveDistance = 10;
chanBW = cfgSys.ChannelBandwidth;
tgaxBase.ChannelBandwidth = chanBW;
tgaxBase.NumReceiveAntennas = numRx;

An individual channel is created for each of the four users. Each channel is a clone of tgaxBase, but
with a different UserIndex property, and is stored in a cell array tgax. The UserIndex property of
each individual channel is set to provide a unique channel for each user. In this example a random
channel realization is used for each packet by randomly varying the UserIndex property for each
transmitted packet.

% A cell array stores the channel objects, one per user
tgax = cell(1,numUsers);
for userIdx = 1:numUsers
 tgax{userIdx} = clone(tgaxBase);
 tgax{userIdx}.NumTransmitAntennas = cfgSys.User{userIdx}.NumTransmitAntennas;
 tgax{userIdx}.UserIndex = userIdx;
end

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate is calculated. The pre-
HE preamble of 802.11ax is backwards compatible with 802.11ac™, therefore in this example the

6 End-to-End Simulation

6-22

timing synchronization components for a VHT waveform are used to synchronize the HE waveform at
the receiver. For each user, the following processing steps occur to create a waveform at the receiver
containing all four users:

1 To create an HE TB waveform, a PSDU is created and encoded for each user based on predefined
user parameters.

2 The waveform for each user is passed through an indoor TGax channel model. Different channel
realizations are modeled for different users and packets, by randomly varying the UserIndex
property of the channel. This results in same spatial correlation properties for all users.

3 The waveforms for all HE TB users are scaled and combined to ensure same SNR for each user
after the addition of noise.

4 AWGN is added to the received waveform to create the desired average SNR per subcarrier after
OFDM demodulation for each user. comm.AWGNChannel is configured to provide the correct
SNR. The configuration accounts for normalization within the channel by the number of receive
antennas, and the noise energy in unused subcarriers which is removed during OFDM
demodulation.

At the receiver (AP) the following processing steps occur:

1 The packet is detected.
2 Fine timing synchronization is established. The L-STF, L-LTF and L-SIG samples are provided for

fine timing to allow for packet detection at the start or end of the L-STF.
3 The HE-LTF and HE-Data fields for all users are extracted from the synchronized received

waveform. The HE-LTF and HE-Data fields are OFDM demodulated.
4 The demodulated HE-LTF is extracted for each RU and channel estimation is performed.
5 Noise estimation is performed using the demodulated data field pilots for each RU.
6 The data field is extracted and equalized for all users within an RU, from the demodulated data

field.
7 For each RU, and user within the RU, the spatial streams for a user are demodulated and

decoded to recover the transmitted PSDU.

A parfor loop can be used to parallelize processing of the SNR points, therefore for each SNR point
an AWGN channel is created and configured with comm.AWGNChannel. To enable the use of parallel
computing for increased speed comment out the 'for' statement and uncomment the 'parfor'
statement below.

ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgSys.ChannelBandwidth,cfgSys.GuardInterval);
numSNR = numel(snr); % Number of SNR points
numPackets = 50; % Number of packets to simulate
packetErrorRate = zeros(numUsers,numSNR);
txPSDU = cell(numUsers);

% parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
for isnr = 1:numSNR
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Create an instance of the AWGN channel per SNR point simulated
 awgn = comm.AWGNChannel;

 802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format

6-23

 awgn.NoiseMethod = 'Signal to noise ratio (SNR)';
 awgn.SignalPower = 1/numRx;
 sysInfo = ruInfo(cfgSys);

 % Simulate multiple packets
 numPacketErrors = zeros(numUsers,1);
 for pktIdx = 1:numPackets

 % Transmit processing
 rxWaveform = 0;
 packetError = zeros(numUsers,1);
 txPSDU = cell(1,numUsers);

 % Generate random channel realization for each packet by varying
 % the UserIndex property of the channel. This assumes all users
 % have the same number of transmit antennas.
 chPermutations = randperm(numUsers);
 for userIdx = 1:numUsers
 % HE TB config object for each user
 cfgUser = cfgTB{userIdx};

 % Generate a packet with random PSDU
 txPSDU{userIdx} = randi([0 1],getPSDULength(cfgUser)*8,1,'int8');

 % Generate HE TB waveform, containing payload for single user
 txTrig = wlanWaveformGenerator(txPSDU{userIdx},cfgUser);

 % Pass waveform through a random TGax Channel
 channelIdx = chPermutations(userIdx);
 reset(tgax{channelIdx}); % New channel realization
 rxTrig = tgax{channelIdx}([txTrig; zeros(15,size(txTrig,2))]);

 % Scale the transmit power of the user within an RU. This is to
 % ensure same SNR for each user after the addition of noise.
 ruNum = cfgSys.User{userIdx}.RUNumber;
 SF = sqrt(1/sysInfo.NumUsersPerRU(ruNum))*sqrt(cfgUser.RUSize/(sum(sysInfo.RUSizes)));

 % Combine uplink users into one waveform
 rxWaveform = rxWaveform+SF*rxTrig;
 end

 % Pass the waveform through AWGN channel. Account for noise
 % energy in nulls so the SNR is defined per active subcarriers.
 awgn.SNR = snr(isnr)-10*log10(ofdmInfo.FFTLength/sum(sysInfo.RUSizes));
 rxWaveform = awgn(rxWaveform);

 % Receive processing
 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rxWaveform,chanBW,0,0.05);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;
 continue; % Go to next loop iteration
 end

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rxWaveform(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,chanBW);

6 End-to-End Simulation

6-24

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected out with the range of expected delays from
 % the channel modeling; packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 continue; % Go to next loop iteration
 end

 % Extract HE-LTF and HE-Data fields for all RUs
 rxLTF = rxWaveform(pktOffset+(ind.HELTF(1):ind.HELTF(2)),:);
 rxData = rxWaveform(pktOffset+(ind.HEData(1):ind.HEData(2)),:);

 for ruIdx = 1:allocInfo.NumRUs
 % Demodulate HE-LTF and HE-Data field for the RU of interest
 ru = [allocInfo.RUSizes(ruIdx) allocInfo.RUIndices(ruIdx)];
 demodHELTFRU = wlanHEDemodulate(rxLTF,'HE-LTF',chanBW,cfgSys.GuardInterval,cfgSys.HELTFType,ru);
 demodHEDataRU = wlanHEDemodulate(rxData,'HE-Data',chanBW,cfgSys.GuardInterval,ru);

 % Channel estimate
 [chanEst,ssPilotEst] = heLTFChannelEstimate(demodHELTFRU,cfgSys,ruIdx);

 % Get indices of data and pilots within RU (without nulls)
 ruOFDMInfo = wlanHEOFDMInfo('HE-Data',cfgSys.ChannelBandwidth,cfgSys.GuardInterval, ...
 [allocInfo.RUSizes(ruIdx) allocInfo.RUIndices(ruIdx)]);

 % Estimate noise power in HE fields of each user
 nVarEst = heNoiseEstimate(demodHEDataRU(ruOFDMInfo.PilotIndices,:,:),ssPilotEst,cfgSys,ruIdx);

 % Discard pilot subcarriers
 demodDataSym = demodHEDataRU(ruOFDMInfo.DataIndices,:,:);
 chanEstData = chanEst(ruOFDMInfo.DataIndices,:,:);

 % Equalize
 if strcmpi(equalizationMethod,'mmse-sic')
 [eqSym,csi] = heSuccessiveEqualize(demodDataSym,chanEstData,nVarEst,cfgSys,ruIdx);
 else
 [eqSym,csi] = heEqualizeCombine(demodDataSym,chanEstData,nVarEst,cfgSys);
 end

 for userIdx = 1:allocInfo.NumUsersPerRU(ruIdx)
 % Get TB config object for each user
 userNum = cfgSys.RU{ruIdx}.UserNumbers(userIdx);
 cfgUser = cfgTB{userNum};

 % Get space-time stream indices for the current user
 stsIdx = cfgUser.StartingSpaceTimeStream-1+(1:cfgUser.NumSpaceTimeStreams);

 % Demap and decode bits
 rxPSDU = wlanHEDataBitRecover(eqSym(:,:,stsIdx),nVarEst,csi(:,stsIdx),cfgUser,'LDPCDecodingMethod','layered-bp');

 % PER calculation
 packetError(userNum) = any(biterr(txPSDU{userNum},rxPSDU));
 end
 end
 numPacketErrors = numPacketErrors+packetError;
 end

 802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format

6-25

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(:,isnr)= numPacketErrors/numPackets;
 disp(['SNR ' num2str(snr(isnr)) ...
 ' completed for ' num2str(numUsers) ' users']);

end

SNR 20 completed for 4 users
SNR 22 completed for 4 users
SNR 24 completed for 4 users

Plot Packet Error Rate vs SNR

markers = 'ox*sd^v><ph+ox*sd^v';
color = 'bmcrgbrkymcrgbrkymc';
figure;

for nSTA = 1:numUsers
 semilogy(snr,packetErrorRate(nSTA,:).',['-' markers(nSTA) color(nSTA)]);
 hold on;
end

grid on;
xlabel('SNR (dB)');
ylabel('PER');
dataStr = arrayfun(@(x)sprintf('STA- %d',x),1:numUsers,'UniformOutput',false);
legend(dataStr);
title('PER for uplink 802.11ax link');

6 End-to-End Simulation

6-26

The number of packets tested at each SNR point is controlled by numPackets. For meaningful
results, this value should be larger than those presented in this example. The figure below was
created by running a longer simulation with numPackets:1e4 and snr:20:2:28, which shows the
packet error rate of both MMSE equalizer and MMSE-SIC equalizer.

 802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format

6-27

Appendix

This example uses the following helper functions and objects:

• heEqualizeCombine.m
• heLTFChannelEstimate.m
• heNoiseEstimate.m
• heSuccessiveEqualize.m
• heTBRU.m
• heTBSystemConfig.m
• heTBUser.m

Selected Bibliography

1 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

2 M. Debbah, B. Muquet, M. de Courville, M. Muck, S. Simoens, and P. Loubaton. A MMSE
successive interference cancellation scheme for a new adjustable hybrid spread OFDM system.
IEEE 51st Vehicular Technology Conference Proceedings, pp. 745-749, vol. 2, 2000.

6 End-to-End Simulation

6-28

802.11ax Compressed Beamforming Packet Error Rate
Simulation

This example shows how to measure the packet error rate of a beamformed IEEE® 802.11ax™ high
efficiency single user (HE SU) format link with different beamforming feedback quantization levels.

Introduction

Transmit beamforming focuses energy towards a receiver to improve the SNR of a link. In this
scheme, the transmitter is called a beamformer and the receiver is called a beamformee. A steering
matrix is used by the beamformer to direct the energy to the beamformee. The steering matrix is
calculated using channel state information obtained through channel measurements. These
measurements are obtained by sounding the channel between beamformer and beamformee. To
sound the channel, the beamformer sends a null data packet (NDP) to the beamformee. The
beamformee measures the channel information during sounding to calculate a feedback matrix. This
matrix is compressed in the form of quantized angles (phi and psi) and fed back to the beamformer.
The beamformer can then calculate the feedback matrix from the quantized angles to create a
steering matrix and beamform transmissions to the beamformee. The process of forming steering
matrix is shown in “802.11ac Transmit Beamforming” on page 3-21.

In this example, a 4x2 MIMO configuration is considered between a transmitter and receiver, with
two space-time streams used for each data packet transmission. An end-to-end simulation is used to
determine the packet error rate (PER) for an 802.11ax [1] single user (SU) format link with
compressed beamforming feedback quantization for different quantization levels and a selection of
SNR points. A plot is generated showing the PER vs SNR curve for each quantization resolution. This
example does not consider grouping of sub-carriers (see Section 9.4.1.65 in [1]).

Waveform Configuration

An HE-SU packet is a full-band transmission to a single user. The transmit parameters for the HE-SU
format are configured using a wlanHESUConfig object. The properties of the object contain the

 802.11ax Compressed Beamforming Packet Error Rate Simulation

6-29

configuration. In this example, the object is configured for a 20 MHz channel bandwidth, 4 transmit
antennas, 2 space-time streams and 16-QAM rate-1/2 (MCS 3).

NumTxAnts = 4; % Number of transmit antennas
NumSTS = 2; % Number of space-time streams
NumRxAnts = 2; % Number of receive antennas
cfgHEBase = wlanHESUConfig;
cfgHEBase.ChannelBandwidth = 'CBW20'; % Channel bandwidth
cfgHEBase.NumSpaceTimeStreams = NumSTS; % Number of space-time streams
cfgHEBase.NumTransmitAntennas = NumTxAnts; % Number of transmit antennas
cfgHEBase.APEPLength = 1e3; % Payload length in bytes
cfgHEBase.ExtendedRange = false; % Do not use extended range format
cfgHEBase.Upper106ToneRU = false; % Do not use upper 106 tone RU
cfgHEBase.PreHESpatialMapping = false; % Spatial mapping of pre-HE fields
cfgHEBase.GuardInterval = 0.8; % Guard interval duration
cfgHEBase.HELTFType = 4; % HE-LTF compression mode
cfgHEBase.ChannelCoding = 'LDPC'; % Channel coding
cfgHEBase.MCS = 3; % Modulation and coding scheme
cfgHEBase.SpatialMapping = 'Custom'; % Custom for beamforming

Null Data Packet (NDP) Configuration

The NDP transmission is configured to have data length of zero. Since the NDP is used to obtain the
channel state information, the number of space-time streams is equal to number of transmit
antennas. This results in a direct mapping of each space-time stream to a transmit antenna.

cfgNDP = cfgHEBase;
cfgNDP.APEPLength = 0; % NDP has no data
cfgNDP.NumSpaceTimeStreams = NumTxAnts; % For feedback matrix calculation
cfgNDP.SpatialMapping = 'Direct'; % Each TxAnt carries a STS

Channel Configuration

In this example, a TGax NLOS indoor channel model is used with delay profile Model-B. The Model-B
profile is considered NLOS when the distance between transmitter and receiver is greater than or
equal to 5 meters. This is described further in wlanTGaxChannel. A 4x2 MIMO channel is simulated
in this example.

% Create and configure the TGax channel
chanBW = cfgHEBase.ChannelBandwidth;
tgaxChannel = wlanTGaxChannel;
tgaxChannel.DelayProfile = 'Model-B';
tgaxChannel.NumTransmitAntennas = NumTxAnts;
tgaxChannel.NumReceiveAntennas = NumRxAnts;
tgaxChannel.TransmitReceiveDistance = 5; % Distance in meters for NLOS
tgaxChannel.ChannelBandwidth = chanBW;
tgaxChannel.LargeScaleFadingEffect = 'None';
fs = wlanSampleRate(cfgHEBase);
tgaxChannel.SampleRate = fs;

Simulation Parameters

This example compares the performance of beamforming with two different resolutions of
compression quantization, and without compression. For each quantization resolution, an end to end
simulation with various SNR values is run to determine the packet error rate. 802.11ax Draft 4.1
specifies only two sets of quantization resolution for single user beamforming (Table 9-31a in [1]).
The value of codeBookSize determines the number of bits used to quantize the beamforming

6 End-to-End Simulation

6-30

feedback angles (phi and psi) in this simulation. When codeBookSize is Inf, no compression is
performed. The quantization levels selected by codeBookSize are shown in the table below:

codeBookSize Compression Configuration
--
 0 NumBitsphi = 4; NumBitspsi = 2
 1 NumBitsphi = 6; NumBitspsi = 4
 Inf No compression
--

codeBookSize = [0 1 Inf];

A number of packets are generated, passed through a channel and demodulated to determine the
packet error rate for each compression configuration at each SNR (dB) value in the snr vector.

snr = 10:2:18;

The number of packets tested at each SNR point is limited to a maxNumErrors or maxNumPackets:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For statistically meaningful
results we recommend increasing these numbers.

maxNumErrors = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % The maximum number of packets at an SNR point

Processing SNR Points

For each SNR point, a number of packets are tested and the packet error rate calculated. The pre-HE
preamble of 802.11ax is backwards compatible with 802.11ac™, therefore in this example the front-
end synchronization components for a VHT waveform are used to synchronize the HE waveform at
the receiver. For each packet, the following processing steps occur.

The beamformer obtains the steering matrix by transmitting an NDP which is processed by the
beamformee to create a feedback matrix:

1 An NDP waveform is transmitted through an indoor TGax channel model. Different channel
realizations are modeled for different packets.

2 AWGN is added to the received waveform to create the desired average SNR per subcarrier after
OFDM demodulation. The comm.AWGNChannel is configured to provide the correct SNR. The
configuration accounts for normalization within the channel by the number of receive antennas,
and the noise energy in unused subcarriers which are removed during OFDM demodulation.

3 The packet is detected at the beamformee.
4 Coarse carrier frequency offset is estimated and corrected.
5 Fine timing synchronization is established. The L-STF, L-LTF and L-SIG samples are provided for

fine timing to allow for packet detection at the start or end of the L-STF.
6 Fine carrier frequency offset is estimated and corrected.
7 The HE-LTF is extracted from the synchronized received waveform. The HE-LTF is OFDM

demodulated and channel estimation is performed.

 802.11ax Compressed Beamforming Packet Error Rate Simulation

6-31

8 Singular value decomposition is performed on the estimated channel and the beamforming
feedback matrix, V is calculated.

9 If there is no compression, this feedback matrix, V will be used as the steering matrix by the
beamformer.

10 If compression is used, the feedback matrix, V will be compressed and quantized to create a set
of angles as specified in the standard.

The beamformer transmits a data packet using the recovered steering matrix and the beamformee
decodes the beamformed data transmission to recover the PSDU:

1 Since the current example assumes zero delay in getting the beamforming feedback from the
beamformee, the quantized angles are converted back to the beamforming feedback matrix, V.

2 A PSDU is created and encoded to create a single packet waveform with the steering matrix set
to the beamforming feedback matrix, V.

3 The waveform is passed through the same indoor TGax channel realization as the NDP
transmission.

4 AWGN is added to the received waveform.
5 As with NDP, synchronization and HE channel estimation are performed.
6 The data field is extracted from the synchronized received waveform and OFDM demodulated.
7 Common phase error pilot tracking is performed to track any residual carrier frequency offset.
8 Noise estimation is performed using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers.
9 The phase corrected OFDM symbols are equalized with the channel estimate.
10 The equalized symbols are demodulated and decoded to recover the PSDU.

A parfor loop can be used to parallelize processing of the SNR points. To enable the use of parallel
computing for increased speed comment out the 'for' statement and uncomment the 'parfor'
statement below.

numQuant = numel(codeBookSize);
numSNR = numel(snr); % Number of SNR points
packetErrorRate = zeros(numQuant,numSNR);

% Get occupied subcarrier indices and OFDM parameters
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgHEBase);

% Indices to extract fields from the PPDU
ind = wlanFieldIndices(cfgHEBase);
indSound = wlanFieldIndices(cfgNDP);

for ibf = 1:numQuant
 switch codeBookSize(ibf) % See P802.11ax/D4.1 Section 9.4.1.64
 case 0
 NumBitsPsi = 2; % Number of bits for psi
 NumBitsPhi = 4; % Number of bits for phi
 disp('End-to-End simulation with compressed beamforming quantization with');
 disp(['Number of Bits for phi = ' num2str(NumBitsPhi) ...
 ' and Number of Bits for psi = ' num2str(NumBitsPsi)]);
 case 1
 NumBitsPsi = 4; % Number of bits for psi
 NumBitsPhi = 6; % Number of bits for phi
 disp('End-to-End simulation with compressed beamforming quantization with');

6 End-to-End Simulation

6-32

 disp(['Number of Bits for phi = ' num2str(NumBitsPhi) ...
 ' and Number of Bits for psi = ' num2str(NumBitsPsi)]);
 otherwise
 disp('End-to-End simulation with non-compressed beamforming');
 end

 %parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
 for isnr = 1:numSNR
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',100);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Create an instance of the AWGN channel per SNR point simulated
 awgnChannel = comm.AWGNChannel;
 awgnChannel.NoiseMethod = 'Signal to noise ratio (SNR)';
 awgnChannel.SignalPower = 1/tgaxChannel.NumReceiveAntennas;
 % Account for noise energy in nulls so the SNR is defined per
 % active subcarrier
 awgnChannel.SNR = snr(isnr)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Create an instance of the HE configuration object per SNR point
 % simulated. This will enable to use parfor
 cfgHE = cfgHEBase;

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Null data packet transmission
 tx = wlanWaveformGenerator([],cfgNDP);

 % Add trailing zeros to allow for channel delay
 txPad = [tx; zeros(50,cfgNDP.NumTransmitAntennas)];

 % Pass through a fading indoor TGax channel
 reset(tgaxChannel); % Reset channel for different realization
 rx = tgaxChannel(txPad);

 % Pass the waveform through AWGN channel
 rx = awgnChannel(rx);

 % Calculate the steering matrix at the beamformee
 V = heUserBeamformingFeedback(rx,cfgNDP,true);

 if isempty(V)
 % User feedback failed, packet error
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 if ~isinf(codeBookSize(ibf))
 % Find quantized angles of the beamforming feedback matrix
 angidx = bfCompressQuantize(V(:,1:NumSTS,:),NumBitsPhi,NumBitsPsi);

 % Calculate steering matrix from the quantized angles at

 802.11ax Compressed Beamforming Packet Error Rate Simulation

6-33

 % beamformer:
 % Assuming zero delay in transmitting the quantized angles
 % from beamformee to beamformer, the steering matrix is
 % calculated from the quantized angles and is used in the
 % data transmission of beamformer.

 [~,Nc,Nr] = size(V(1,1:NumSTS,:));
 V = bfDecompress(angidx,Nr,Nc,NumBitsPhi,NumBitsPsi);
 end

 steeringMat = V(:,1:NumSTS,:);

 % Beamformed data transmission
 psduLength = getPSDULength(cfgHE); % PSDU length in bytes
 txPSDU = randi([0 1],psduLength*8,1); % Generate random PSDU
 cfgHE.SpatialMappingMatrix = steeringMat;
 tx = wlanWaveformGenerator(txPSDU,cfgHE);

 % Add trailing zeros to allow for channel delay
 txPad = [tx; zeros(50,cfgHE.NumTransmitAntennas)];

 % Pass through a fading indoor TGax channel
 rx = tgaxChannel(txPad);

 % Pass the waveform through AWGN channel
 rx = awgnChannel(rx);

 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rx,chanBW);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-STF and perform coarse frequency offset correction
 lstf = rx(coarsePktOffset+(ind.LSTF(1):ind.LSTF(2)),:);
 coarseFreqOff = wlanCoarseCFOEstimate(lstf,chanBW);
 rx = helperFrequencyOffset(rx,fs,-coarseFreqOff);

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rx(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,chanBW);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected outwith the range of expected delays from
 % the channel modeling; packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-LTF and perform fine frequency offset correction
 rxLLTF = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
 fineFreqOff = wlanFineCFOEstimate(rxLLTF,chanBW);

6 End-to-End Simulation

6-34

 rx = helperFrequencyOffset(rx,fs,-fineFreqOff);

 % HE-LTF demodulation and channel estimation
 rxHELTF = rx(pktOffset+(ind.HELTF(1):ind.HELTF(2)),:);
 heltfDemod = wlanHEDemodulate(rxHELTF,'HE-LTF',cfgHE);
 [chanEst,pilotEst] = heLTFChannelEstimate(heltfDemod,cfgHE);

 % Data demodulate
 rxData = rx(pktOffset+(ind.HEData(1):ind.HEData(2)),:);
 demodSym = wlanHEDemodulate(rxData,'HE-Data',cfgHE);

 % Pilot phase tracking
 % Average single-stream pilot estimates over symbols (2nd dimension)
 pilotEstTrack = mean(pilotEst,2);
 demodSym = heCommonPhaseErrorTracking(demodSym,pilotEstTrack,cfgHE);

 % Estimate noise power in HE fields
 nVarEst = heNoiseEstimate(demodSym(ofdmInfo.PilotIndices,:,:),pilotEstTrack,cfgHE);

 % Extract data subcarriers from demodulated symbols and channel
 % estimate
 demodDataSym = demodSym(ofdmInfo.DataIndices,:,:);
 chanEstData = chanEst(ofdmInfo.DataIndices,:,:);

 % Equalization and STBC combining
 [eqDataSym,csi] = heEqualizeCombine(demodDataSym,chanEstData,nVarEst,cfgHE);

 % Recover data
 rxPSDU = wlanHEDataBitRecover(eqDataSym,nVarEst,csi,cfgHE,'LDPCDecodingMethod','layered-bp');

 % Determine if any bits are in error, i.e. a packet error
 packetError = ~isequal(txPSDU,rxPSDU);
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(ibf,isnr) = numPacketErrors/(numPkt-1);
 disp(['MCS ' num2str(cfgHE.MCS) ','...
 ' SNR ' num2str(snr(isnr)) ...
 ' completed after ' num2str(numPkt-1) ' packets,'...
 ' PER:' num2str(packetErrorRate(ibf,isnr))]);
 end
 disp(newline);
end

End-to-End simulation with compressed beamforming quantization with
Number of Bits for phi = 4 and Number of Bits for psi = 2
MCS 3, SNR 10 completed after 13 packets, PER:0.84615
MCS 3, SNR 12 completed after 54 packets, PER:0.2037
MCS 3, SNR 14 completed after 100 packets, PER:0.07
MCS 3, SNR 16 completed after 100 packets, PER:0
MCS 3, SNR 18 completed after 100 packets, PER:0

End-to-End simulation with compressed beamforming quantization with
Number of Bits for phi = 6 and Number of Bits for psi = 4
MCS 3, SNR 10 completed after 13 packets, PER:0.84615

 802.11ax Compressed Beamforming Packet Error Rate Simulation

6-35

MCS 3, SNR 12 completed after 54 packets, PER:0.2037
MCS 3, SNR 14 completed after 100 packets, PER:0.06
MCS 3, SNR 16 completed after 100 packets, PER:0
MCS 3, SNR 18 completed after 100 packets, PER:0

End-to-End simulation with non-compressed beamforming
MCS 3, SNR 10 completed after 13 packets, PER:0.84615
MCS 3, SNR 12 completed after 59 packets, PER:0.18644
MCS 3, SNR 14 completed after 100 packets, PER:0.06
MCS 3, SNR 16 completed after 100 packets, PER:0
MCS 3, SNR 18 completed after 100 packets, PER:0

Plot Packet Error Rate vs Signal to Noise Ratio

figure;
lineTypes = ["k-o" "b-s" "r-*"];
semilogy(snr,packetErrorRate(1,:),lineTypes(1));
hold on;
grid on;
xlabel('SNR (dB)');
ylabel('PER');
for ibf = 2:numQuant
 semilogy(snr,packetErrorRate(ibf,:),lineTypes(ibf));
end
dataStr = [string(['Compressed Beamforming, ' newline ...
 'NumBitsPhi = 4, NumBitsPsi = 2' newline])...
 string(['Compressed Beamforming, ' newline ...
 'NumBitsPhi = 6, NumBitsPsi = 4' newline]) ...
 "Non-Compressed Beamforming"];
legend(dataStr);
title(sprintf('802.11ax Beamforming PER for Channel %s, %s, %s',tgaxChannel.DelayProfile,cfgHEBase.ChannelBandwidth,cfgHEBase.ChannelCoding));

6 End-to-End Simulation

6-36

The number of packets tested at each SNR point is controlled by two parameters: maxNumErrors
and maxNumPackets. For meaningful results, these values should be larger than those presented in
this example. As an example, the figure below was created by running a longer simulation with
maxNumErrors:1e3 and maxNumPackets:1e4.

 802.11ax Compressed Beamforming Packet Error Rate Simulation

6-37

Appendix

This example uses the following helper functions:

• bfCompressQuantize.m
• bfDecompress.m
• heCommonPhaseErrorTracking.m
• heEqualizeCombine.m
• helperFrequencyOffset.m
• heLTFChannelEstimate.m
• heNoiseEstimate.m
• heUserBeamformingFeedback.m

Selected Bibliography

1 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

6 End-to-End Simulation

6-38

802.11ax Feedback Status Misdetection Simulation for Uplink
Trigger-Based Feedback NDP

This example shows how to measure the probability of misdetecting feedback status information in an
uplink high efficiency (HE) trigger-based (TB) feedback null data packet (NDP) transmission from
multiple uplink stations (STAs).

Introduction

The 802.11ax [1 on page 6-0] HE TB feedback NDP is a variant of the HE TB physical layer
protocol data unit (PPDU). The HE TB feedback NDP transmission is controlled entirely by an access
point (AP). All the parameters required for the transmission are provided in a trigger frame of type
NDP feedback report poll (NFRP) sent to all STAs participating in the HE TB feedback transmission.
Following the transmission of an NFRP trigger frame from the AP, multiple STAs may simultaneously
transmit an HE TB feedback NDP, which carries the resource request information (feedback status)
as shown in this diagram. For more information on the NDP feedback report procedure, see the NDP
Feedback Report Procedure section of the wlanHETBConfig reference page.

This example measures the probability of misdetecting feedback status information for an HE TB
feedback NDP by comparing the transmitted and received feedback statuses. A misdetection is
recorded when the recovered feedback status is incorrect or undetermined. The example performs
this measurement for a transmission between four STAs and an AP by using an end-to-end simulation.
The STA infers the transmission parameters from the User Info field of the soliciting NFRP trigger
frame. At each signal-to-noise ratio (SNR) point the STA transmits multiple packets with no
impairments apart from multipath fading and noise. The STA demodulates the packet and recovers
the feedback status. The AP determines the probability of misdetecting feedback status by comparing
the recovered and transmitted feedback status.

Each STA transmits a waveform by performing these processing steps.

1 Determine if the STA is scheduled to transmit an HE TB feedback NDP.
2 Determine the RU tone set index and starting space time stream number for all transmitting

STAs.
3 Generate an HE TB feedback NDP for the STAs.

 802.11ax Feedback Status Misdetection Simulation for Uplink Trigger-Based Feedback NDP

6-39

4 Pass the waveform for each STA through an indoor channel by using the wlanTGaxChannel
System object(TM) . Model different channel realizations for each user and each packet by
randomly varying the UserIndex property of wlanTGaxChannel. This process results in the same
spatial correlation properties for all STAs.

5 Combine waveforms from all STAs.
6 Add additive white Gaussian noise (AWGN) to the received waveform. The AWGN creates the

desired average SNR per subcarrier after orthogonal frequency-division multiplexing (OFDM)
demodulation for each STA.

The receiver (AP) performs these processing steps on the received waveform.

1 Use perfect channel delay estimate to synchronize.
2 Extract the HE-LTF from the synchronized waveform and demodulate the HE-LTF.
3 Recover feedback status information from the demodulated HE-LTF symbols [2 on page 6-0].

This figure shows the processing for each link between the STA and AP.

Simulate Uplink Transmission

This section simulates an end-to-end uplink scenario for multiple STAs and SNR points. Specify the
number of STAs and the SNR range. This section estimates the probability of misdetecting feedback
status for all STAs. The feedback status represents the resource request information from the STA
and is defined in Table 26-3 of [1 on page 6-0].

% Set transmission parameters

numSTAs = ; % Number of uplink STAs

STAID = ; % STA association ID, assigned to each associated STA with an AP

multiplexingFlag = ; % Signaled in the trigger frame of type NFRP for each STA

feedbackStatus = ; % Resource request information signaled by each STA

startingAID = ; % Signaled in the trigger frame of type NFRP

6 End-to-End Simulation

6-40

% Set simulation parameters

numPackets = ; % Number of packets to simulate

snrRange = ; % SNR points (dB)

chanBW = ; % Channel bandwidth

numTx = ; % Assume same number of transmit antennas for all STAs

numRx = ; % Number of receive (AP) antennas

HE TB Feedback NDP Waveform Configuration

Configure the waveform generator for each STA. The STA performs these steps.

• Check if the STA is scheduled to transmit.
• Calculate the RUToneSetIndex for each STA from STAID, startingAID, and chanBW.
• Calculate starting space time stream number for all STAs from STAID, startingAID, and

chanBW.
• Generate configuration object for all STAs.

% Return the index of the transmitting STAs. Calculate RUToneSetIndex and starting space time stream for all STAs.
[txSTAIndex,ruToneSetIndexPerSTA,startingSTSNumPerSTA] = heTBNDPMappingParams(chanBW,numSTAs,multiplexingFlag,startingAID,STAID);
numTxSTAs = numel(txSTAIndex); % STAs scheduled to transmit
cfgSTA = cell(1,numTxSTAs);

% Generate the configuration object and set the feedback status property for all STAs
cfgBase = wlanHETBConfig('ChannelBandwidth',chanBW,'NumTransmitAntennas',numTx,'SpatialMapping','Fourier');
cfgNDP = getNDPFeedbackConfiguration(cfgBase);
if numSTAs~=numel(feedbackStatus)
 error('The number of elements in FeedbackStatus must be equal to the number of STAs');
end

for u=1:numTxSTAs
 cfgNDP.RUToneSetIndex = ruToneSetIndexPerSTA(u);
 cfgNDP.StartingSpaceTimeStream = startingSTSNumPerSTA(u);
 cfgNDP.FeedbackStatus = feedbackStatus(txSTAIndex(u));
 cfgSTA{u} = cfgNDP;
end

Channel Configuration

This example uses a TGax non-line-of-sight (NLOS) indoor channel model with delay profile Model-D.
Model-D is considered NLOS when the distance between the transmitter and receiver is greater than
or equal to ten meters. For more information, see wlanTGaxChannel. This example assumes that all
STAs are at the same distance from the AP.

delayProfile = ; % TGax channel multipath delay profile
tgaxBase = wlanTGaxChannel;
tgaxBase.DelayProfile = delayProfile;
tgaxBase.SampleRate = wlanSampleRate(cfgSTA{1});
tgaxBase.TransmissionDirection = 'Uplink';
tgaxBase.TransmitReceiveDistance = 10;
tgaxBase.ChannelBandwidth = chanBW;
tgaxBase.NumReceiveAntennas = numRx;

 802.11ax Feedback Status Misdetection Simulation for Uplink Trigger-Based Feedback NDP

6-41

tgaxBase.NormalizeChannelOutputs = false;
tgaxBase.PathGainsOutputPort = true;

Create an individual channel for each STA. Each channel is a clone of tgaxBase, but with a different
UserIndex property, and is stored in cell array tgax. The UserIndex property of each individual
channel creates a unique channel for each user. This example uses a random channel realization for
each packet by randomly varying the UserIndex property of each transmitted packet.

% A cell array stores the channel objects, one per STA.
tgax = cell(1,numTxSTAs);
for u=1:numTxSTAs
 tgax{u} = clone(tgaxBase);
 tgax{u}.NumTransmitAntennas = numTx;
 tgax{u}.UserIndex = u;
end
chInfo = info(tgaxBase);
chFilterCoefficients = chInfo.ChannelFilterCoefficients; % Channel filter coefficients

Processing SNR Points

This section tests a number of packets at each SNR point and calculates the probability of
misdetecting recovered feedback status.

To parallelize processing of the SNR points, you can use a parfor loop. To enable the use of parallel
computing for increased speed comment out the 'for' statement and uncomment the 'parfor'
statement below.

% Processing SNR Points
ofdmInfo = wlanHEOFDMInfo('HE-LTF',cfgNDP);
numSNR = numel(snrRange); % Number of SNR points
misdetectionProbability = zeros(numTxSTAs,numSNR);
ind = wlanFieldIndices(cfgNDP); % Same for all STAs

%parfor isnr=1:numSNR % Use 'parfor' to speed up the simulation
for isnr=1:numSNR
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);
 rxFeedbackStatus = zeros(numPackets,numTxSTAs);
 chDelay = zeros(1,numTxSTAs);

 for pktIdx=1:numPackets
 rxWaveform = 0;

 % Generate random channel realization for each packet by varying
 % the UserIndex property of the channel. This assumes all STAs
 % have the same number of transmit antennas.
 chPermutations = randperm(numTxSTAs);
 for u=1:numTxSTAs
 % Generate HE TB feedback NDP waveform for each STA
 txSTA = wlanWaveformGenerator([],cfgSTA{u});

 % Pass waveform through a random TGax Channel
 channelIdx = chPermutations(u);
 reset(tgax{channelIdx}); % New channel realization
 [rxSTA,h] = tgax{channelIdx}([txSTA; zeros(50,size(txSTA,2))]);

6 End-to-End Simulation

6-42

 % Perform perfect channel delay estimate to find the start of
 % the packet
 chDelay(u) = channelDelay(h,chFilterCoefficients);

 % Combine uplink waveform from all STAs into one waveform
 rxWaveform = rxWaveform+rxSTA;
 end

 % Synchronize later in time by using the maximum channel delay
 % between all channels as the start of the packet
 pktOffset = max(chDelay(u)); % Packet start index

 % Pass the waveform through AWGN channel. Account for noise
 % energy in unused subcarriers.
 snrVal = snrRange(isnr)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);
 rxWaveform = awgn(rxWaveform,snrVal);

 % Uplink processing (at the AP)
 rxHELTF = rxWaveform(pktOffset+(ind.HELTF(1):ind.HELTF(2)),:);
 heltfDemod = wlanHEDemodulate(rxHELTF,'HE-LTF',chanBW,cfgNDP.GuardInterval,cfgNDP.HELTFType);

 % Recover feedback status for all STAs
 for u=1:numTxSTAs
 rxFeedbackStatus(pktIdx,u) = wlanHETBNDPFeedbackStatus(heltfDemod,cfgSTA{u});
 end
 end
 % Probability of misdetection per STA
 misdetectionProbability(:,isnr) = 1-sum(rxFeedbackStatus==feedbackStatus(txSTAIndex))/numPackets;
 disp(['SNR ' num2str(snrRange(isnr)) ' completed']);
end

SNR -2 completed
SNR 0 completed
SNR 2 completed
SNR 4 completed
SNR 6 completed

Plot Probability of Misdetection Against SNR

markers = 'ox*sd^v><ph+';
numMarkers = numel(markers);
for u=1:numTxSTAs
 semilogy(snrRange,misdetectionProbability(u,:),['-' markers(mod(u-1,numMarkers)+1)]); hold on;
end
xlabel('SNR(dB)');
ylabel('Probability of misdetection');
dataStr = arrayfun(@(x)sprintf('STAID %d',x),STAID(txSTAIndex),'UniformOutput',false);
title(sprintf('%s, Channel %s, %d-by-%d',chanBW,delayProfile,numTx,numRx));
legend(dataStr);
grid on;

 802.11ax Feedback Status Misdetection Simulation for Uplink Trigger-Based Feedback NDP

6-43

The number of packets tested at each SNR point depends on numPackets. For meaningful results,
increase the value of numPackets. This figure was created by running a longer simulation with
numPackets:1e4 and snrRange:-2:2:6.

6 End-to-End Simulation

6-44

Selected Bibliography

1 IEEE P802.11ax™/D7.0 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High Efficiency WLAN.

2 Montreuil, L. et al. NDP Short Feedback Design. IEEE 802.11-17/0044r4, May 2017.

 802.11ax Feedback Status Misdetection Simulation for Uplink Trigger-Based Feedback NDP

6-45

Three-Dimensional Indoor Positioning with 802.11az
Fingerprinting and Deep Learning

This example shows how to train a convolutional neural network (CNN) for localization and
positioning by using generated IEEE® 802.11az™ data. Using the trained CNN, you can predict the
location or position of multiple stations (STAs) based on a fingerprint consisting of multiple channel
impulse responses (CIRs) and evaluate the performance of the CNN.

Introduction

The IEEE 802.11az Wi-Fi™ standard [1 on page 6-0], commonly referred to as next generation
positioning (NGP), provides physical layer features that enable enhanced ranging and positioning
using classical techniques.

Classical techniques rely on line-of-sight (LOS) conditions to effectively extract temporal information,
such as time of arrival (ToA), or spatial information, such as angle of arrival (AoA), from a multipath
signal to compute a distance or range between devices. When the range between a minimum of three
devices can be measured, trilateration can be used to compute a position estimate. For more
information about how to use classical ranging and positioning techniques, see the“802.11az
Positioning Using Super-Resolution Time of Arrival Estimation” on page 6-63 example.

Fingerprinting and deep learning techniques can be used in Wi-Fi positioning systems to achieve sub-
meter accuracies even in non-line-of-sight (NLOS) multipath environments [2 on page 6-0]. A
fingerprint typically contains channel state information (CSI), such as a received signal strength
indicator (RSSI) or a channel estimate from a received signal, measured at a specific location in an
environment [3 on page 6-0].

During the training phase of the network, the example creates a database by sampling the channel
fingerprints at multiple known locations in an environment. The network estimates the user location
based on a signal received at an unknown location by using the database as a reference.

This example creates a data set of CIR fingerprints by using 802.11az signals in an indoor
environment, labeling each fingerprint with its location information. The example trains a CNN to
predict STA locations by using a subset of the fingerprints, then evaluates the performance of the
trained model by generating predictions of STA locations based on their CIR fingerprint remainder of
the data set.

For simplicity, this example uses a small data set, which results in a short simulation time. For more
accurate results, use a larger data set. The example provides pretrained models on page 6-0 to
show the high levels of performance that can be achieved with more training data.

Simulation Parameters

Indoor Propagation Environment

Generate training data for an indoor office environment specified by the office.stl file.

mapFileName = "office.stl";
helperVisualizeScenario(mapFileName)

6 End-to-End Simulation

6-46

The example places four access points (APs) and a number of STAs that you specify in this
environment. The example generates the fingerprints based on the propagation channel defined by
the environment, then generates the associated channel impulse response by using ray-tracing
techniques. For more information on ray tracing for indoor environments, see the “Indoor MIMO-
OFDM Communication Link using Ray Tracing” example.

AP and STA Parameters

Select the size of the transmit and receive antenna arrays, and the channel bandwidth. These
parameters control the quantity of data and its resolution within each fingerprint. Larger antenna
arrays produce more channel realizations and more CIRs per fingerprint. A higher bandwidth
increases the sample rate of the CIR, capturing it in more detail. Changing these parameters makes
the data set incompatible with the pretrained models, as the dimensions of each fingerprint must
match the shape of the model input layer.

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-47

https://inside-apps.mathworks.com/example-manager#comm-ex66739070

S = RandStream("mt19937ar","Seed",5489); % Set the RNG for reproducibility.
RandStream.setGlobalStream(S);

txArraySize = ; % Linear transmit array

rxArraySize = ; % Linear receive array

chanBW = ;

Specify the number of STAs used to map the environment and the distribution of STAs. To distribute
STAs uniformly in each dimension as an evenly spaced grid, set distribution to uniform. To
distribute STAs randomly within the environment, set distribution to random.

When you distribute the STAs uniformly, the example determines the number of STAs by using the
value of staSeparation, which measures the distance, in meters, between STAs in all dimensions.

When you randomly distribute STAs, specify the number of STAs by setting the value of numSTAs.

distribution = ;

staSeparation = ; % STA separation, in meters, used only when the distribution is uniform

numSTAs = ; % Number of STAs, used only when distribution is random

Localization and Positioning

Determine whether the example performs localization or positioning [4 on page 6-0]. Localization
is a classification task in which the output of the model is a predicted label related to a discrete area
of the map at which a STA is located. Localization is useful for tasks where precise positioning is less
important than being able to estimate the general location of a user with a high degree of accuracy,
for example, the room on the floor of a building or an aisle in a store. Positioning is a regression task
in which the output of the model is the predicted position of a STA. Positioning can estimate the exact
location of the user but can have a higher error for positions across an area when compared to
localization.

task = ;

A localization task determines the general location of a STA, rather than its precise location. This
diagram shows the layout of the small office with discrete areas used as classes for localization. The
red square markers indicate the locations of the APs. The blue dashed box represents the area where
the example distributes the STAs during the training process. The example restricts the height of the
STAs to a range between 0.8 and 1.8 meters. This range represents a realistic set of values for
portable consumer devices. This constraint also minimizes the chance of STAs being placed in
unreachable positions.

6 End-to-End Simulation

6-48

Training Data Synthesis

This section shows how to synthesize the data set for training the CNN.

Generate AP and STA Positions

Generate the AP and STA objects and visualize them in the indoor scenario. If you use a file other
than office.stl, you must adjust the AP and STA locations within the
dlPositioningCreateEnvironment function to fit the new environment.

if distribution == "uniform"
 [APs,STAs] = dlPositioningCreateEnvironment(txArraySize,rxArraySize,staSeparation,"uniform");
else
 [APs,STAs] = dlPositioningCreateEnvironment(txArraySize,rxArraySize,numSTAs,"random");
end
helperVisualizeScenario(mapFileName,APs,STAs)
view([65.99 32.49])

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-49

Generate Channel Characteristics by Using Ray-Tracing Techniques

Set the parameters of the ray propagation model. This example considers only LOS and first-order
reflections by setting the MaxNumReflections parameter to 1. For more accurate propagation
models, set the MaxNumReflections property to 2. Increasing the maximum number of reflections
increases the simulation time. To consider only LOS propagation, set the MaxNumReflections
property to 0.

pm = propagationModel("raytracing-image-method", ...
 "CoordinateSystem","cartesian", ...
 "SurfaceMaterial","wood", ...
 "MaxNumReflections",1);

Perform ray-tracing analysis for all AP-STA pairs. The raytrace function returns the generated rays
in a cell array of size NAP-by-NSTA, where NAP is the number of APs and NSTA is the number of STAs.

6 End-to-End Simulation

6-50

% Perform ray tracing for all transmitters and receivers in parallel
rays = raytrace(APs,STAs,pm,"Map",mapFileName);
size(rays)

ans = 1×2

 4 480

Visualize the calculated rays between all APs and a single STA. The color represents the associated
path loss in dB.

helperVisualizeScenario(mapFileName,APs,STAs(30))
helperVisualizeRays([rays{:, 30}]);
view([84.75 56.38])

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-51

Generate 802.11az CIR Fingerprint Features and Labels

This section shows how to compute the CIRs for each AP-STA pair by using the calculated rays. This
diagram shows the processing chain that the example uses to generate the CIRs.

Each AP transmits an 802.11az packet through a noisy channel, and each STA receives the packet.
The example assumes that each STA can differentiate between APs, and that no interference occurs
between APs.

Packet reception at a location fails if the path between the location and an AP, or if synchronization
fails due to low SNR. In this case, the generated CIR is a vector of zeros.

This example uses the magnitude of each multipath component in the CIR as training data. Therefore,
the generated CIRs are real-valued. The example stores the CIRs in a four-dimensional array of size
Ns-by-Ntx‐rx-by-NAP-by-Nr.

• Ns is the number of time-domain samples in the CIR.

• Ntx‐rx is the total number of transmit-receive antenna pairs.

• NAP is the number of APs.

• Nr is the number of channel realizations for all SNR points.

The example trains the CNN by combining these features with labels of the STA position or location
names.

6 End-to-End Simulation

6-52

To simulate variations in the environment, repeat the fingerprinting process under different noise
conditions by specifying a range of SNR values.

snrs = [10 15 20];

Configure the waveform parameters. In particular, set the number of space-time streams (STSs) to
the size of the transmit antenna array to ensure that the signal from each transmit antenna
contributes to the fingerprint of a STA during channel estimation.

cfg = heRangingConfig('ChannelBandwidth',chanBW, ...
 "NumTransmitAntennas",prod(txArraySize), ...
 "SecureHELTF",true, ...
 "GuardInterval",1.6);
cfg.User{1}.NumSpaceTimeStreams = prod(txArraySize);

Generate the data set.

[features,labels] = dlPositioningGenerateDataSet(rays,STAs,APs,cfg,snrs);

Generating Dataset: 10% complete.
Generating Dataset: 20% complete.
Generating Dataset: 30% complete.
Generating Dataset: 40% complete.
Generating Dataset: 50% complete.
Generating Dataset: 60% complete.
Generating Dataset: 70% complete.
Generating Dataset: 80% complete.
Generating Dataset: 90% complete.
Generating Dataset: 100% complete.

Deep Learning

Deep learning uses neural networks to approximate functions across a diverse range of domains. A
CNN is a neural network architecture that uses two-dimensional multichannel images. CNNs
preserve and learn features from spatial aspects of the data. The deep learning workflow comprises
these steps.

1 Define the training data.
2 Define the neural network model.
3 Configure the learning process.
4 Train the model.
5 Evaluate model performance.

Define Training Data

Neural networks are powerful models that can fit a variety of data. To validate results, split the data
set into 80% training data and 20% validation data. Training data is the data that the model learns to
fit by adjusting its weighted parameters based on the error of its predictions. Validation data is the
data that the example uses to ensure that the model is performing as expected on unseen data and
not overfitting the training data.

[training,validation] = dlPositioningSplitDataSet(features,labels,0.2);

Define Neural Network Model

A typical CNN consists of seven main layers.

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-53

1 Input layer, which defines the size and type of the input data
2 Convolutional layer, which performs convolution operations on the layer's input by using a set of

filters
3 Batch normalization layer, which prevents unstable gradients by normalizing the activations of a

layer
4 Activation (ReLU) layer, which a nonlinear activation function that thresholds the output of the

previous functional layer
5 Pooling layer, which extracts and pools feature information
6 Dropout layer, which randomly deactivates a percentage of the parameters of the previous layer

during training to prevent overfitting
7 Output layer, which defines the size and type of output data

You can form a deep network by arranging layers from these classes and repeating them in blocks.
The CNN in this example consists of four blocks, each with a convolution, batch normalization, ReLU,
and average pooling layer. The example adds dropout regularization (20%) before the final layers.
This architecture is similar to that of the CNN used in the “Train Convolutional Neural Network for
Regression” (Deep Learning Toolbox) example, which predicts the rotated positions of handwritten
digit images and demonstrates the diverse applications of deep learning models with minimal
changes to their parameters.

Construct the CNN.

layers = [

 imageInputLayer(size(training.X, 1:3))

 convolution2dLayer(3,256,"Padding","same")
 batchNormalizationLayer
 reluLayer

 averagePooling2dLayer(2,"Stride",2,"Padding","same")

 convolution2dLayer(3,256,"Padding","same")
 batchNormalizationLayer
 reluLayer

 averagePooling2dLayer(2,"Stride",2,"Padding","same")

 convolution2dLayer(3,256,"Padding","same")
 batchNormalizationLayer
 reluLayer

 averagePooling2dLayer(2,"Stride",2,"Padding","same")

 convolution2dLayer(3,256,"Padding","same")
 batchNormalizationLayer
 reluLayer

 averagePooling2dLayer(2,"Stride",2,"Padding","same")

 dropoutLayer(0.2)];

Specify the size of the output layer and the activation function for the output, depending on the
selected task.

6 End-to-End Simulation

6-54

if task == "localization"
 layers = [
 layers
 fullyConnectedLayer(7)
 softmaxLayer
 classificationLayer];
else % positioning
 layers = [
 layers
 fullyConnectedLayer(3)
 regressionLayer];
end

Match the labels given to the network with the expected model output for each task. The features are
an image of CIR fingerprints for both tasks.

if task == "localization"
 valY = validation.Y.classification;
 trainY = training.Y.classification;
else % positioning
 valY = validation.Y.regression;
 trainY = training.Y.regression;
end

Configure Learning Process and Train Model

Set the number of training data samples that the model evaluates during each training iteration.
Increase the number of samples when using a larger data set.

miniBatchSize = 32;

Set the validation frequency so that the network is validated about once per epoch. The network
evaluates the unseen samples to test generalization at the end of each validation period.

validationFrequency = floor(size(training.X,4)/miniBatchSize);

Specify the options that control the training process. The number of epochs controls how many times
the example trains the model consecutively on the full training data set. By default, the example
trains the model on a GPU if one is available. Using a GPU required Parallel Computing Toolbox™ and
a supported GPU device. For information on supported devices, see .

options = trainingOptions("adam", ...
 "MiniBatchSize",miniBatchSize, ...
 "MaxEpochs",3, ...
 "InitialLearnRate", 1e-4,...
 "Shuffle","every-epoch", ...
 "ValidationData",{validation.X,valY'}, ...
 "ValidationFrequency",validationFrequency, ...
 "Verbose",true, ...
 "ResetInputNormalization",true, ...
 "ExecutionEnvironment","auto");

Train the model.

net = trainNetwork(training.X,trainY',layers,options);

Training on single CPU.
Initializing input data normalization.

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-55

|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation | Base Learning |
| | | (hh:mm:ss) | Accuracy | Accuracy | Loss | Loss | Rate |
|==|
1	1	00:00:03	21.88%	51.04%	1.9794	1.6179	1.0000e-04
1	36	00:00:30	68.75%	64.93%	0.9004	0.9578	1.0000e-04
2	50	00:00:39	59.38%		1.0421		1.0000e-04
2	72	00:00:56	68.75%	68.75%	0.9528	0.8707	1.0000e-04
3	100	00:01:14	62.50%		0.9362		1.0000e-04
3	108	00:01:21	56.25%	67.01%	1.0847	0.8366	1.0000e-04
==							

Evaluate Model Performance

Investigate the model performance by examining predicted values for the validation data. Predict
labels by passing the validation set features through the network, then evaluate the performance of
the network by comparing the predicted labels with the validation set labels.

if task == "localization"
 YPred = net.classify(validation.X);
else % positioning
 YPred = net.predict(validation.X);
end

Generate a visual and statistical view of the results.

For localization, the dlPositioningPlotResults function generates a three-dimensional map,
which displays the true locations of STAs. The color assigned to each STA denotes its predicted
location. The function also generates a confusion matrix in which the rows correspond to the
predicted class and the columns correspond to the true class. The diagonal cells correspond to
observations that are correctly classified. The off-diagonal cells correspond to incorrectly classified
observations. If the network performs well, elements in the main diagonal are significantly larger
than the other matrix elements.

For positioning, the color assigned to each STA denotes the distance error of the predicted position.
The function also generates a cumulative distribution function (CDF). The y-axis measures the
proportion of the data for which the measured distance error is less than or equal to the
corresponding value on the x-axis.

metric = dlPositioningPlotResults(mapFileName,validation.Y,YPred,task);

6 End-to-End Simulation

6-56

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-57

Pretrained Model

This example uses a small data set and limited training period, which produces modest results. You
can obtain more accurate results by using a CNN pretrained with a large data set. Download the
resulting CNN for positioning and localization from https://www.mathworks.com/supportfiles/spc/
wlan/Positioning80211azExample/pretrained_networks.zip. This zip file contains two MAT files:

• localization_cbw40_4x4.mat - CNN trained for localization
• positioning_cbw40_4x4.mat - CNN trained for positioning

All models were trained for 100 epochs with a miniBatchSize value of 256 on a data set of
fingerprints from a uniform distribution of STAs with a staSeparation value of 0.1. The bandwidth
was 40 MHz bandwidth with four-antenna linear arrays in the transmitter and receiver (4×4 MIMO).

To explore the performance of these pretrained models, download and extract the zip file, load the
appropriate MAT file into the workspace, and run the Evaluate Model Performance on page 6-0
section again.

Effect of Antenna Array Size and Bandwidth

The pretrained models show that an increased number of STAs and training epochs improve
performance. This section shows the effect of channel bandwidth and size of antenna arrays on
performance.

These figures show the impact of channel bandwidth on positioning and localization performance.
These results were generated by training a model for 100 epochs with a miniBatchSize value of

6 End-to-End Simulation

6-58

https://www.mathworks.com/supportfiles/spc/wlan/Positioning80211azExample/pretrained_networks.zip.
https://www.mathworks.com/supportfiles/spc/wlan/Positioning80211azExample/pretrained_networks.zip.

256 with a data set compiled from a uniform distribution of STAs sampled at intervals of 0.1 meters,
in which each STA and AP contained a four-element linear antenna array. Using a larger bandwidth
results in more accurate estimation as a higher sampling rate increases the resolution of CIRs.

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-59

These figures show the impact of the number of transmit and receive antennas. These results were
generated using a bandwidth of 20 MHz. The accuracy increases for larger antenna arrays due to the
presence of more channel information. For example, a 4×4 channel contains 16 channel realizations,
whereas a 2×2 channel contains only four. As expected, the CNN performs better when trained with
more data.

6 End-to-End Simulation

6-60

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-61

These results were generated with data samples which were not used to train the CNNs. If data
samples used to train the CNN are also used to evaluate performance the results may differ.

References

1 IEEE P802.11az™/D2.6 Draft Standard for Information technology— Telecommunications and
information exchange between systems Local and metropolitan area networks— Specific
requirements - Amendment 3: Enhancements for positioning.

2 Kokkinis, Akis, Loizos Kanaris, Antonio Liotta, and Stavros Stavrou. “RSS Indoor Localization
Based on a Single Access Point.” Sensors 19, no. 17 (August 27, 2019): 3711. https://doi.org/
10.3390/s19173711.

3 Wang, Xuyu, Lingjun Gao, Shiwen Mao, and Santosh Pandey. “CSI-Based Fingerprinting for
Indoor Localization: A Deep Learning Approach.” IEEE Transactions on Vehicular Technology,
2016, 763–776. https://doi.org/10.1109/TVT.2016.2545523.

4 Groves, Paul D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems.
Boston: Artech House, 2008.

6 End-to-End Simulation

6-62

802.11az Positioning Using Super-Resolution Time of Arrival
Estimation

This example shows how to estimate the position of a station (STA) in a multipath environment by
using a time-of-arrival-based (ToA-based) positioning algorithm defined in the IEEE® 802.11az™ Wi-
Fi™ standard. The example estimates the ToA by using a multiple signal classification (MUSIC) super-
resolution approach, then estimates the two-dimensional position of a STA by using trilateration. The
example then evaluates and compares the performance of the positioning algorithm at multiple
signal-to-noise ratio (SNR) points.

Introduction

The 802.11az standard [1 on page 6-0], commonly referred to as next generation positioning
(NGP), enables a STA to identify its position relative to multiple access points (APs). This standard
supports two high-efficiency (HE) ranging physical layer (PHY) protocol data unit (PPDU) formats:

• HE ranging null data packet (NDP)
• HE trigger-based (TB) ranging NDP

The HE ranging NDP and HE TB ranging NDP are the respective analogues of the HE sounding NDP
and HE TB feedback NDP PPDU formats, as defined in the 802.11ax™ standard. For more
information on these HE PPDU formats, see [2] on page 6-0 .

The HE ranging NDP supports the positioning of one or more users with an optional secure HE long
training field (HE-LTF) sequence. The single-user HE ranging waveform contains HE-LTF symbols for
a single user, which also support an optional secure HE-LTF sequence. The multi-user HE ranging
waveform permits only secure HE-LTF symbols for multiple users. To improve position estimation
accuracy, single-user and multi-user waveforms can contain multiple repetitions of the HE-LTF
symbols. To parameterize and generate HE ranging NDPs, see the “802.11az Waveform Generation”
on page 1-2 example.

This example simulates an 802.11az network consisting of a STA and multiple APs. To estimate the
position of a STA, the network requires a minimum of three APs. The example simulates a ranging
measurement exchange for each STA-AP pair, then trilaterates the position of the STA by using these
measurements. The example repeats this simulation for multiple iterations and SNR points. This
diagram shows the positioning process in a network with one STA and three APs.

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-63

Packet Transmission and Reception

This example models the measurement exchange between the STA and APs by performing these
steps.

1 Generate a ranging NDP
2 Delay the NDP according to a randomly generated distance between the STA and AP, adding

fractional and integer sample delay
3 Pass the waveform through an indoor TGax channel. The example models different channel

realizations for different packets
4 Add additive white Gaussian noise (AWGN) to the received waveform. The example uses the same

SNR value for all the links between STA and APs
5 Perform synchronization and frequency correction on the received waveform
6 Demodulate the HE-LTF
7 Estimate the channel frequency response from the HE-LTF
8 Estimate the distance by using the MUSIC super-resolution algorithm
9 Combine distance estimates from other STA-AP pairs and trilaterate the position of the STA

6 End-to-End Simulation

6-64

This figure illustrates the processing for each STA-AP link.

Distance Ranging

The example performs a distance ranging measurement between the STA and each AP by capturing
the timestamps of the NDP. The STA records the time t1 (UL ToD) at which it transmits the uplink
NDP (UL NDP). The AP then captures the time t2 (UL ToA) at which it receives the UL NDP and
records the time t3 (DL ToD) at which it transmits the downlink NDP (DL NDP). The STA then
captures the time t4 (DL ToA) at which it receives the DL NDP. This diagram illustrates the
measurement sounding phase between a STA and a single AP [1 on page 6-0].

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-65

The example estimates TRTT the round trip time (RTT), by combining these timestamps.

TRTT = (t4− t1) − (t3− t2)

The example then computes the distance d between the STA and AP by using this equation.

d =
TRTT

2 c , where c is speed of light

The example estimates t2 and t4 by using MUSIC super-resolution. To compute these estimates, the
example performs these steps [3 on page 6-0].

1 Interpolate across missing subcarriers from the channel frequency response (CFR), assuming
uniform subcarrier spacing

2 Estimate the CFR correlation matrix
3 Decorrelate the multipaths by using spatial smoothing

6 End-to-End Simulation

6-66

4 Improve the correlation matrix estimate by performing forward-backward averaging. The
example assumes that CFR estimates from multiple spatial streams are different CFR snapshots,
and uses all the snapshots for correlation matrix estimation.

5 Run the MUSIC algorithm. Perform eigendecomposition on the correlation matrix to separate it
into signal and noise subspaces. Estimate the time-domain delay profile by finding all instances
where signal and noise subspaces are orthogonal. The example assumes that the precise signal
subspace dimension, equal to the number of multipaths, is known.

6 Determine the ToA by finding the first peak of the recovered multipaths in the estimated delay
profile, assumed to be the direct-line-of-sight (DLOS) path

This diagram illustrates the distance ranging process.

This plot compares the true multipath delay profile and the MUSIC estimated delay profile for a
single 802.11az link simulation.

heRangingPlotDelayProfile()

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-67

Simulation Parameters

This example performs a ranging and positioning simulation for multiple iterations and SNR points.
At each iteration, the AP and the STA exchange multiple uplink and downlink packets. The example
estimates the ranging error between the AP and the STA for each iteration by comparing the
estimated distance between the AP and the STA with the known distance.

Specify the number of iterations, SNR points, and APs in the networks. To estimate the position of a
STA, the network requires a minimum of three APs. For each iteration, use a different random set of
AP positions, a different channel realization, and a different AWGN profile. The example generates a
cumulative distribution function (CDF) for the absolute ranging error by using the ranging
measurements from all iterations and all STA-AP pairs.

numIterations = ; % Number of iterations

snrRange = ; % SNR points, in dB

numAPs = ; % Number of APs

802.11az Waveform Configuration

Configure waveform generators for each AP and the STA.

chanBW = ; % Channel bandwidth

numTx = ; % Number of transmit antennas

numRx = ; % Number of receive antennas

numSTS = ; % Number of space-time streams

numLTFRepetitions = ; % Number of HE-LTF repetitions

Configure the HE ranging NDP parameters of the STA.

cfgSTABase = heRangingConfig;
cfgSTABase.ChannelBandwidth = chanBW;
cfgSTABase.NumTransmitAntennas = numTx;
cfgSTABase.SecureHELTF = true;
cfgSTABase.User{1}.NumSpaceTimeStreams = numSTS;
cfgSTABase.User{1}.NumHELTFRepetition = numLTFRepetitions;
cfgSTABase.GuardInterval = 1.6;

Configure the HE ranging NDP parameters of the APs.

cfgAPBase = cell(1,numAPs);
for iAP = 1:numAPs
 cfgAPBase{iAP} = heRangingConfig;
 cfgAPBase{iAP}.ChannelBandwidth = chanBW;
 cfgAPBase{iAP}.NumTransmitAntennas = numTx;
 cfgAPBase{iAP}.SecureHELTF = true;
 cfgAPBase{iAP}.User{1}.NumSpaceTimeStreams = numSTS;
 cfgAPBase{iAP}.User{1}.NumHELTFRepetition = numLTFRepetitions;
 cfgAPBase{iAP}.GuardInterval = 1.6;
end

6 End-to-End Simulation

6-68

ofdmInfo = wlanHEOFDMInfo('HE-LTF',chanBW,cfgSTABase.GuardInterval);
sampleRate = heRangingSampleRate(cfgSTABase);

Channel Configuration

Configure the WLAN TGax multipath channel by using the wlanTGaxChannel System object™. This
System object can generate a channel with a dominant direct path, in which the DLOS path is the
strongest path, or a channel with a non-dominant direct path, for which the DLOS path is present, but
not the strongest path.

delayProfile = ; % TGax channel multipath delay profile

carrierFrequency = 5e9; % Carrier frequency, in Hz
speedOfLight = physconst('lightspeed');

chanBase = wlanTGaxChannel;
chanBase.DelayProfile = delayProfile;
chanBase.NumTransmitAntennas = numTx;
chanBase.NumReceiveAntennas = numRx;
chanBase.SampleRate = sampleRate;
chanBase.CarrierFrequency = carrierFrequency;
chanBase.ChannelBandwidth = chanBW;
chanBase.PathGainsOutputPort = true;
chanBase.NormalizeChannelOutputs = false;

Get channel filter delay and the number of paths

chBaseInfo = info(chanBase);
chDelay = chBaseInfo.ChannelFilterDelay;
numPaths = size(chBaseInfo.PathDelays,2);

Ranging Measurement

Run a ranging simulation with multiple iterations for all STA-AP pairs. Display the ranging mean
absolute error (MAE) and the ranging error CDF for each SNR point.

delayULDL = 16e-6; % Time delay between UL NDP ToA and DL NDP ToD, in seconds

numSNR = numel(snrRange);
distEst = zeros(numAPs,numIterations,numSNR); % Estimated distance
distance = zeros(numAPs,numIterations,numSNR); % True distance
positionSTA = zeros(2,numIterations,numSNR); % Two-dimensional position of the STA
positionAP= zeros(2,numAPs,numIterations,numSNR); % Two-dimensional positions of the APs
per = zeros(numSNR,1); % Packet error rate (PER)

%parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
for isnr = 1:numSNR

 % Use a separate channel and waveform configuration object for each parfor stream
 chan = chanBase;
 cfgAP = cfgAPBase;
 cfgSTA = cfgSTABase;

 % Initialize ranging error and total failed packet count variables
 rangingError = 0;
 failedPackets = 0;

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-69

 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',123456);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Define the SNR per active subcarrier to account for noise energy in nulls
 snrVal = snrRange(isnr) - 10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 for iter = 1:numIterations

 % Gennerate random AP positions
 [positionSTA(:,iter,isnr),positionAP(:,:,iter,isnr),distanceAllAPs] = heGeneratePositions(numAPs);
 distance(:,iter,isnr) = distanceAllAPs;

 % Range-based delay
 delay = distance(:,iter,isnr)/speedOfLight;
 sampleDelay = delay*sampleRate;

 % Loop over the number of APs
 for ap = 1:numAPs

 linkType = ["Uplink","Downlink"];

 % ToD of UL NDP (t1)
 todUL = randsrc(1,1,0:1e-9:1e-6);

 % Loop for both UL and DL transmission
 numLinks = numel(linkType);
 txTime = zeros(1,numLinks);

 for l = 1:numLinks
 if linkType(l) == "Uplink" % STA to AP
 cfgSTA.UplinkIndication = 1; % For UL
 % Generate a random secure HE-LTF sequence for the exchange
 cfgSTA.User{1}.SecureHELTFSequence = dec2hex(randsrc(1,10,(0:15)))';
 cfg = cfgSTA;
 else % AP to STA
 % Generate a random secure HE-LTF sequence for the exchange
 cfgAP{ap}.User{1}.SecureHELTFSequence = dec2hex(randsrc(1,10,(0:15)))';
 cfg = cfgAP{ap}; % For DL
 end

 % Set different channel for UL and DL, assuming that the channel is not reciprocal
 reset(chan)

 % Generate HE Ranging NDP transmission
 tx = heRangingWaveformGenerator(cfg);

 % Introduce time delay (fractional and integer) in the transmit waveform
 txDelay = heDelaySignal(tx,sampleDelay(ap));

 % Pad signal and pass through multipath channel
 txMultipath = chan([txDelay;zeros(50,cfg.NumTransmitAntennas)]);

 % Pass waveform through AWGN channel
 rx = awgn(txMultipath,snrVal);

6 End-to-End Simulation

6-70

 % Perform synchronization and channel estimation
 [chanEstActiveSC,integerOffset] = heRangingSynchronize(rx,cfg);

 % Estimate the transmission time between UL and DL
 if ~isempty(chanEstActiveSC) % If packet detection is successful

 % Estimate fractional delay with MUSIC super-resolution
 fracDelay = heRangingTOAEstimate(chanEstActiveSC,ofdmInfo.ActiveFFTIndices, ...
 ofdmInfo.FFTLength,sampleRate,numPaths);

 integerOffset = integerOffset - chDelay; % Account for channel filter delay
 intDelay = integerOffset/sampleRate; % Estimate integer time delay
 txTime(l) = intDelay + fracDelay; % Transmission time

 else % If packet detection fails
 txTime(l) = NaN;
 end

 end

 if ~any(isnan(txTime)) % If packet detection succeeds

 % TOA of UL waveform (t2)
 toaUL = todUL + txTime(1);

 % Time of departure of DL waveform (t3)
 todDL = toaUL + delayULDL;

 % TOA DL waveform (t4)
 toaDL = todDL + txTime(2);

 % Compute the RTT
 rtt = (toaDL-todUL) - (todDL-toaUL);

 % Estimate the distance between the STA and AP
 distEst(ap,iter,isnr) = (rtt/2)*speedOfLight;
 % Accumulate error to MAE
 rangingError = rangingError + abs(distanceAllAPs(ap) - distEst(ap,iter,isnr));

 else % If packet detection fails
 distEst(ap,iter,isnr) = NaN;
 failedPackets = failedPackets + 1;
 end

 end
 end
 mae = rangingError/((numAPs*numIterations) - failedPackets); % MAE for successful packets
 per(isnr) = failedPackets/(numAPs*numIterations); % PER
 if(per(isnr) > 0.01) % Use only successful packets for ranging and positioning
 warning('wlan:discardPacket','At SNR = %d dB, %d%% of packets were discarded',snrRange(isnr),100*per(isnr));
 end
 disp(['At SNR = ',num2str(snrRange(isnr)),' dB, ','Ranging mean absolute error = ',num2str(mae), ' meters.'])
end

At SNR = 15 dB, Ranging mean absolute error = 0.57082 meters.
At SNR = 25 dB, Ranging mean absolute error = 0.40224 meters.
At SNR = 35 dB, Ranging mean absolute error = 0.25439 meters.

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-71

% Reshape to consider all packets within one SNR point as one dataset
rangingError = reshape(abs(distance - distEst),[numAPs*numIterations,numSNR]);
hePlotErrorCDF(rangingError,snrRange)
xlabel('Absolute ranging error (meters)')
title('Ranging Error CDF')

Trilateration

Trilaterate the location of the STA in two dimensions by using the distance estimates, then calculate
the positioning root-mean-square error (RMSE) for each iteration by using the STA position estimate.
Display the average RMSE and its CDF for each SNR point.

positionSTAEst = zeros(2,numIterations,numSNR);
RMSE = zeros(numIterations,numSNR);
for isnr = 1:numSNR
 for i = 1:numIterations
 positionSTAEst(:,i,isnr) = hePositionEstimate(squeeze(positionAP(:,:,i,isnr)),squeeze(distEst(:,i,isnr)));
 end
 % Find the RMSE for each iteration, then take the mean of all RMSEs
 RMSE = reshape(sqrt(mean(((positionSTAEst-positionSTA).^2),1)),[numIterations numSNR]);
 posEr = mean(RMSE(:,isnr),'all','omitnan');
 disp(['At SNR = ',num2str(snrRange(isnr)),' dB, ', 'Average RMS Positioning error = ', num2str(posEr), ' meters.'])
end

At SNR = 15 dB, Average RMS Positioning error = 0.61713 meters.
At SNR = 25 dB, Average RMS Positioning error = 0.40481 meters.
At SNR = 35 dB, Average RMS Positioning error = 0.26968 meters.

6 End-to-End Simulation

6-72

hePlotErrorCDF(RMSE,snrRange)
xlabel('RMS positioning error (meters)')
title('Positioning Error CDF')

Plot the location estimate and the trilateration circles of the last iteration.

hePlotTrilaterationCircles(positionAP(:,:,numIterations,numSNR),positionSTAEst(:,numIterations,numSNR),distEst(:,numIterations,numSNR),snrRange(numSNR),numIterations);

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-73

Conclusion

This example shows how to use a positioning algorithm with the IEEE® 802.11az™ standard. In
particular, the example shows how to estimate the transmit-receive distance between a STA and AP
by using MUSIC super-resolution, and how to locate a STA in two dimensions by using the ranging
measurements from multiple STA-AP pairs. The example demonstrates the increase in performance of
the positioning system at higher SNRs by computing the positioning estimate at multiple SNR points.

Further Exploration

Besides SNR, several important parameters impact positioning performance, such as HE-LTF
repetitions, number of spatial streams, higher bandwidths, and channel delay profiles. This figure
shows the impact of HE-LTF repetitions on ranging performance. To generate this figure, run a longer
simulation with three randomly placed APs and 4000 iterations for a Model-B 2×2 MIMO channel of
20 MHz at 20 dB SNR. The figure shows that the ranging error decreases with the increase in HE-
LTF repetitions. This decrease occurs because HE-LTF repetitions effectively reduce the noise in the
CFR by averaging out multiple CFR estimates.

6 End-to-End Simulation

6-74

This figure shows the impact of different MIMO configurations on ranging performance. To generate
this figure, run a longer simulation with three randomly placed APs and 4000 iterations, generating
ranging packets with three HE-LTF repetitions at 20 MHz and specifying a Model-B channel at 20 dB
SNR. The figure shows that the ranging error decreases with higher-order MIMO configurations. This
decrease occurs because higher-order MIMO configurations produce more CFR snapshots from the
different spatial streams available. More CFR snapshots give a better correlation matrix estimate
which yields better ToA and distance estimates.

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-75

Related Examples

• “Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning” on page
6-46. Trains a convolutional neural network (CNN) for localization and positioning by using Deep
Learning Toolbox and IEEE 802.11az data generated with WLAN Toolbox.

• “802.11az Waveform Generation” on page 1-2. Parameterizes and generates IEEE 802.11az high-
efficiency (HE) ranging null data packet (NDP) waveforms and highlights some of the key features
of the standard.

References

1 IEEE P802.11az™/D2.0 Draft Standard for Information technology— Telecommunications and
information exchange between systems Local and metropolitan area networks— Specific
requirements - Amendment 3: Enhancements for positioning.

2 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

3 Xinrong Li and K. Pahlavan, "Super-resolution TOA estimation with diversity for indoor
geolocation," in IEEE Transactions on Wireless Communications, vol. 3, no. 1, pp. 224-234, Jan.
2004, doi: 10.1109/TWC.2003.819035.

6 End-to-End Simulation

6-76

802.11ad Packet Error Rate Simulation for Control PHY
This example shows how to measure the packet error rate of an IEEE® 802.11ad™ DMG control PHY
AWGN link using an end-to-end simulation.

Introduction

In this example an end-to-end simulation is used to determine the packet error rate for an 802.11ad
[1] control PHY link with an AWGN channel at a selection of SNR points. At each SNR point multiple
packets are transmitted through a noisy channel, de-spread and the PSDUs recovered. The PSDUs
are compared to those transmitted to determine the number of packet errors and hence the packet
error rate. The receiver assumes perfect synchronization when recovering data bits from the received
signal. The following diagram summarizes the processing for each packet.

This example also demonstrates how a parfor loop can be used instead of the for loop when
simulating each SNR point to speed up a simulation. The parfor function, as part of the Parallel
Computing Toolbox™, executes processing for each SNR in parallel to reduce the total simulation
time.

Waveform Configuration

An 802.11ad DMG control PHY transmission is simulated in this example. The DMG format
configuration object, wlanDMGConfig, contains the format-specific configuration of the transmission.
The properties of the object contain the configuration of the transmitted packet. In this example the
object is configured to generate a control PHY waveform. The MCS determines the PHY type used,
therefore the MCS must be set to 0 to use the control PHY.

% Create a format configuration object
cfgDMG = wlanDMGConfig;
cfgDMG.MCS = 0; % MCS 0 represents Control PHY
cfgDMG.PSDULength = 256; % PSDULength in bytes

Spectral Filtering

Spectral filtering is used to reduce the out-of-band spectral emissions due to the spread spectrum
characteristics of the transmitted waveform. In this example, the waveform is filtered through a
raised cosine filter both at the transmitter and receiver using the
comm.RaisedCosineTransmitFilter and comm.RaisedCosineReceiveFilter objects,
respectively. To meet the spectral mask requirements, the raised cosine filter is truncated to the
duration of eight symbols and the roll-off factor is set to 0.5.

% Define the pulse shaping filter characteristics
pulseShaping = true; % Enable pulse shaping
Nsym = 8; % Filter span in symbol durations
alpha = 0.5; % Roll-off factor
osps = 4; % Output samples per symbol

 802.11ad Packet Error Rate Simulation for Control PHY

6-77

% Transmit pulse shaping filter
txFilter = comm.RaisedCosineTransmitFilter;
txFilter.RolloffFactor = alpha;
txFilter.FilterSpanInSymbols = Nsym;
txFilter.OutputSamplesPerSymbol = osps;
txFilter.Shape = 'Normal';

% Receive pulse shaping filter
rxFilter = comm.RaisedCosineReceiveFilter;
rxFilter.RolloffFactor = alpha;
rxFilter.DecimationFactor = osps;
rxFilter.InputSamplesPerSymbol = osps;
rxFilter.FilterSpanInSymbols = Nsym;
rxFilter.Shape = 'Normal';

Simulation Parameters

For each SNR point in the vector snrVec a number of packets are generated, passed through an
AWGN channel and demodulated to determine the packet error rate.

snrVec = -13.5:0.5:-10.5;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For meaningful results we
recommend increasing these numbers.

maxNumErrors = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % Maximum number of packets at an SNR point

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated.

For each packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 AWGN is added to the waveform. The comm.AWGNChannel object is configured to provide the

correct SNR before despreading.
3 The packet is received with perfect synchronization.
4 The header and data fields are extracted from the received waveform and are processed

together.
5 The recovered field is de-rotated by pi/2 and is de-spread.
6 The PSDU is recovered from the extracted field.

A parfor loop can be used to parallelize processing of the SNR points, therefore for each SNR point
an AWGN channel is created and configured with the comm.AWGNChannel object. To enable the use
of parallel computing for increased speed comment out the for statement and uncomment the
parfor statement below.

6 End-to-End Simulation

6-78

numSNR = numel(snrVec); % Number of SNR points
packetErrorRate = zeros(numSNR,1);
indices = wlanFieldIndices(cfgDMG);

if ~strcmp(phyType(cfgDMG),'Control')
 error('This example only supports DMG Control PHY simulation');
end

%parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
for isnr = 1:numSNR % Use 'for' to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Create an instance of the AWGN channel per SNR point simulated
 awgnChannel = comm.AWGNChannel;
 awgnChannel.NoiseMethod = 'Signal to noise ratio (SNR)';
 awgnChannel.SNR = snrVec(isnr);

 % Noise power
 nVar = 10^(-snrVec(isnr)/10);
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted

 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet waveform
 psdu = randi([0 1],cfgDMG.PSDULength*8,1); % PSDULength in bytes
 tx = wlanWaveformGenerator(psdu,cfgDMG);

 % Transmitter filtering
 if pulseShaping
 % Append zero to compensate for filter group delay
 tx = txFilter([tx; zeros(Nsym,1)]);
 reset(txFilter);
 end

 % Add noise
 rx = awgnChannel(tx);

 % Receiver filtering
 if pulseShaping
 rx = rxFilter(rx);
 reset(rxFilter);
 end

 % Synchronize
 % The received signal is synchronized to the start of the packet by
 % compensating for a known delay due the spectral shaping filters
 if pulseShaping
 offset = Nsym;
 else
 offset = 0; %#ok<UNRCH>
 end

 % Process header and data field together
 rxHeaderDataField = rx(offset+(indices.DMGHeader(1):indices.DMGData(2)));

 802.11ad Packet Error Rate Simulation for Control PHY

6-79

 % Apply pi/2 de-rotation and de-spread the received signal
 [rxSym,SF] = dmgControlDespread(rxHeaderDataField);

 % Recover the transmitted PSDU from DMG Data field. Scale the noise
 % power by the spreading factor
 dataDecode = wlanDMGDataBitRecover(rxSym,nVar/SF,cfgDMG);

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(psdu,dataDecode));
 numPacketErrors = numPacketErrors + packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(isnr) = numPacketErrors/(numPkt-1);
 disp(['SNR ' num2str(snrVec(isnr))...
 ' completed after ' num2str(numPkt-1) ' packets,'...
 ' PER: ' num2str(packetErrorRate(isnr))]);
end

Plot Packet Error Rate vs SNR Results

figure;
semilogy(snrVec,packetErrorRate,'-o');
grid on;
xlabel('SNR (dB)');
ylabel('PER');
legend('MCS 0');
title('PER for DMG Control-PHY, AWGN channel');

6 End-to-End Simulation

6-80

Further Exploration

The number of packets tested at each SNR point is controlled by two parameters: maxNumErrors
and maxNumPackets. For meaningful results, it is recommended that these values should be larger
than those presented in this example. Increasing the number of packets simulated allows the PER
under different scenarios to be compared. As an example, the figure below was created by running
the example for a PSDULength of 256 bytes, maxNumErrors:1000 and maxNumPackets: 100000.

 802.11ad Packet Error Rate Simulation for Control PHY

6-81

Selected Bibliography

1 IEEE Std 802.11ad™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

Local Functions

The following local function is used in this example:

• dmgControlDespread: De-spread the receive signal

function [y,SF] = dmgControlDespread(rx)
 SF = 32; % Spreading factor
 dataField = rx.*exp(-1i*pi/2*(0:size(rx,1)-1).'); % De-rotate symbols
 Ga = wlanGolaySequence(SF); % Generate Golay sequence
 y = (reshape(dataField,SF,length(dataField)/SF)'*Ga)/SF;
end

SNR -13.5 completed after 11 packets, PER: 1
SNR -13 completed after 12 packets, PER: 0.91667
SNR -12.5 completed after 53 packets, PER: 0.20755
SNR -12 completed after 100 packets, PER: 0.04
SNR -11.5 completed after 100 packets, PER: 0

6 End-to-End Simulation

6-82

SNR -11 completed after 100 packets, PER: 0
SNR -10.5 completed after 100 packets, PER: 0

 802.11ad Packet Error Rate Simulation for Control PHY

6-83

802.11ad Packet Error Rate Simulation for OFDM PHY
This example shows how to measure the packet error rate of an IEEE® 802.11ad™ DMG OFDM PHY
link using an end-to-end simulation with an AWGN channel.

Introduction

In this example an end-to-end simulation is used to determine the packet error rate for an 802.11ad
DMG [1] OFDM link with an AWGN channel at a selection of SNR points for a defined modulation
and coding scheme (MCS). For each SNR point, multiple packets are transmitted through a channel,
demodulated and the PSDUs recovered. The PSDUs are compared to those transmitted to determine
the number of packet errors and hence the packet error rate. Perfect time and frequency
synchronization is assumed in this example. The following diagram summarizes the processing for
each packet.

This example also demonstrates how speed up simulations by using a parfor loop instead of a for
loop when simulating each SNR point. The parfor function, as part of the Parallel Computing
Toolbox™, executes processing for each SNR in parallel to reduce the total simulation time.

Waveform Configuration

An 802.11ad DMG OFDM transmission is simulated in this example. The DMG format configuration
object, wlanDMGConfig, contains the format specific configuration of the transmission. The
properties of the object contain the configuration. In this example the object is configured for an
OFDM transmission with MCS 21 and an 8192 byte PSDU. If mcs is specified as a vector, the
simulation is performed for each MCS element. The MCS determines the PHY type used, therefore
the MCS must be within the range 13-24 to use the OFDM PHY.

% Create a format configuration object for a DMG OFDM transmission
cfgDMG = wlanDMGConfig;
cfgDMG.PSDULength = 8192; % bytes

% For DMG OFDM PHY, the valid range of MCS is 13-24(inclusive)
mcs = 21; % OFDM PHY, 16QAM, rate 13/16

Simulation Parameters

For each SNR point a number of packets are generated, passed through a channel and demodulated
to determine the packet error rate. The SNR points to simulate are selected from snrRanges based
on the MCS to simulate. The SNR range for each MCS is selected in order to simulate the transition
from all packets being decoded in error to all packets being decoded successfully as the SNR
increases.

% SNR ranges to use for AWGN
snrRanges = {...
 -1:0.5:1.5, ... % MCS 13
 0:0.5:2.5, ... % MCS 14
 1.5:0.5:4, ... % MCS 15

6 End-to-End Simulation

6-84

 3:0.5:5.5, ... % MCS 16
 4.5:0.5:7, ... % MCS 17
 7.5:0.5:10, ... % MCS 18
 9:0.5:11.5, ... % MCS 19
 10.5:0.5:13, ... % MCS 20
 12:0.5:14.5, ... % MCS 21
 14.5:0.5:17, ... % MCS 22
 16.5:0.5:19, ... % MCS 23
 17.5:0.5:20, ... % MCS 24
 };

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For meaningful results we
recommend increasing these numbers.

maxNumErrors = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % Maximum number of packets at an SNR point

Set the remaining variables for the simulation.

% OFDM information
ofdmInfo = wlanDMGOFDMInfo();

% Indices of data and pilot occupied subcarriers
cfgDMG.MCS = mcs(1); % Set OFDM MCS to get subcarrier indices
Nsd = numel(ofdmInfo.DataIndices); % Number of data carrying subcarriers

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated.

For each packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 AWGN is added to the waveform to create the desired average SNR per subcarrier after OFDM

demodulation. The comm.AWGNChannel object is configured to provide the correct SNR. The
configuration accounts for the noise energy in unused subcarriers which are removed during
OFDM demodulation.

3 The DMG-Data field is extracted from the perfectly synchronized received waveform and OFDM
demodulated.

4 The pilots are discarded and the remaining OFDM demodulated symbols are equalized using the
known channel response. As an AWGN link is used in this example, the complex channel gain is
assumed to be one for each subcarrier.

5 The PSDU is recovered from the equalized data symbols.

A parfor loop can be used to parallelize processing of the SNR points, therefore for each SNR point
an AWGN channel is created and configured with the comm.AWGNChannel object. To use parallel
computing for increased speed, comment out the for statement and uncomment the parfor
statement in this code.

 802.11ad Packet Error Rate Simulation for OFDM PHY

6-85

numSNR = numel(snrRanges{1}); % Number of SNR points
numMCS = numel(mcs); % Number of MCS
packetErrorRate = zeros(numMCS,numSNR);

for imcs = 1:numMCS
 cfgDMG.MCS = mcs(imcs);
 if ~strcmp(phyType(cfgDMG),'OFDM')
 error('This example only supports DMG OFDM PHY simulation');
 end

 % Indices of fields within the packet
 fieldIndices = wlanFieldIndices(cfgDMG);

 % SNR points to simulate from MCS
 snr = snrRanges{cfgDMG.MCS-12};

 %parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
 for isnr = 1:numSNR % Use 'for' to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Create an instance of the AWGN channel per SNR point simulated
 awgnChannel = comm.AWGNChannel;
 awgnChannel.NoiseMethod = 'Signal to noise ratio (SNR)';
 awgnChannel.SignalPower = 1;
 % Account for noise energy in nulls so the SNR is defined per
 % active subcarrier
 awgnChannel.SNR = snr(isnr)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet waveform
 txPSDU = randi([0 1],cfgDMG.PSDULength*8,1); % PSDULength in bytes
 tx = wlanWaveformGenerator(txPSDU,cfgDMG);

 % Pass the waveform through AWGN channel model
 rx = awgnChannel(tx);

 % Extract data field
 rxData = rx(fieldIndices.DMGData(1):fieldIndices.DMGData(2));

 % OFDM demodulate
 demodSym = wlanDMGOFDMDemodulate(rxData);
 dataSym = demodSym(ofdmInfo.DataIndices,:); % Discard pilots

 % Equalize
 chanSym = ones(Nsd,1); % Set channel gains to 1 as AWGN channel
 nVar = 10^(-snr(isnr)/10); % Noise variance
 [eqSym,csi] = helperSymbolEqualize(dataSym,chanSym,nVar);

 % Recover data
 rxPSDU = wlanDMGDataBitRecover(eqSym,nVar,csi,cfgDMG);

6 End-to-End Simulation

6-86

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(txPSDU,rxPSDU));
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(imcs,isnr) = numPacketErrors/(numPkt-1);
 disp(['MCS ' num2str(mcs(imcs)) ','...
 ' SNR ' num2str(snr(isnr)) ...
 ' completed after ' num2str(numPkt-1) ' packets,'...
 ' PER:' num2str(packetErrorRate(imcs,isnr))]);
 end
end

MCS 21, SNR 12 completed after 11 packets, PER:1
MCS 21, SNR 12.5 completed after 12 packets, PER:0.91667
MCS 21, SNR 13 completed after 71 packets, PER:0.15493
MCS 21, SNR 13.5 completed after 100 packets, PER:0.02
MCS 21, SNR 14 completed after 100 packets, PER:0
MCS 21, SNR 14.5 completed after 100 packets, PER:0

Plot Packet Error Rate vs SNR Results

markers = 'ox*sd^v><ph+';
color = 'bmcrgbrkymcr';
figure;
for imcs = 1:numMCS
 semilogy(snrRanges{mcs(imcs)-12},packetErrorRate(imcs,:).',['-' markers(imcs) color(imcs)]);
 hold on;
end
grid on;
xlabel('SNR (dB)');
ylabel('PER');
dataStr = arrayfun(@(x)sprintf('MCS %d',x),mcs,'UniformOutput',false);
legend(dataStr);
title('PER for DMG OFDM-PHY with AWGN channel');

 802.11ad Packet Error Rate Simulation for OFDM PHY

6-87

Further Exploration

The number of packets tested at each SNR point is controlled by two parameters: maxNumErrors
and maxNumPackets. For meaningful results these values should be larger than those presented in
this example. Increasing the number of packets simulated allows the PER under different scenarios to
be compared. As an example, the figure below was created by running the example for longer with
maxNumErrors = 1e3 and maxNumPackets = 1e4, for mcs = 13:24.

6 End-to-End Simulation

6-88

Appendix

This example uses the following helper function:

• helperSymbolEqualize.m

Selected Bibliography

1 IEEE Std 802.11ad™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

 802.11ad Packet Error Rate Simulation for OFDM PHY

6-89

802.11ad Single Carrier Link with RF Beamforming in Simulink
This example shows how to model an IEEE® 802.11ad™ single carrier link in Simulink® which
includes a phased array antenna with RF beamforming. This example requires the following products:

• WLAN Toolbox™ for baseband transmitter and receiver

• Phased Array System Toolbox™ for receive antenna array

• RF Blockset™ for RF receiver

Introduction

This model simulates an 802.11ad single carrier (SC) [1] link with RF beamforming. Multiple
packets are transmitted through free space, then RF beamformed, demodulated and the PLCP service
data units (PSDU) are recovered. The PSDUs are compared with those transmitted to determine the
packet error rate. The receiver performs packet detection, timing synchronization, carrier frequency
offset correction and unique word based phase tracking.

The MATLAB function block allows Simulink models to use MATLAB® functions. In this example, an
802.11ad SC link modeled in Simulink uses WLAN Toolbox functions called using MATLAB function
blocks. For an 802.11ad baseband simulation in MATLAB, see the example “802.11ad Packet Error
Rate Single Carrier PHY Simulation with TGay Channel” on page 5-2.

6 End-to-End Simulation

6-90

System Architecture

The system consists of:

• A baseband transmitter which generates a random PSDU and an 802.11ad SC packet.
• A free space channel.
• A receive antenna array which supports up to 16 elements. This module allows control of the array

geometry, number of elements in an array, operating frequency, and receiver direction.
• A 16 channel RF receiver module to process the RF signals. This receiver module includes low

noise amplifiers, phase shifters, Wilkinson 16:1 combiner, and a down-converter. This module
allows control of the beamforming direction used to calculate the corresponding phase shifts.

• A baseband receiver which recovers the transmitted PSDU by performing packet detection, time
and frequency synchronization, channel estimation, PSDU demodulation, and decoding.

The system diagnostics includes the display of equalized constellation and the obtained packet error
rate.

The following sections describe the transmitter and receiver in more detail.

Baseband Transmitter

The baseband transmitter block creates a random PSDU and encodes the bits to create a single
packet waveform based on the MCS and PSDU length values in the Model Parameters block. The
packet generator block uses the function wlanWaveformGenerator to encode a packet.

 802.11ad Single Carrier Link with RF Beamforming in Simulink

6-91

RF Receiver

The RF receiver consists of amplifiers, phase shifters, Wilkinson 16:1 combiner and is implemented in
superheterodyne fashion.

6 End-to-End Simulation

6-92

The phase shift applied to each element is calculated based on the beamforming direction. This is
provided by the user and indicates the direction of the main beam. The receiver maximizes the SNR
when the receiver's main beam points to the transmitter. Transmitter is omnidirectional and the

 802.11ad Single Carrier Link with RF Beamforming in Simulink

6-93

receiver direction (az,el) indicates the direction of incident signal. The scenario where the receiver
direction and the beamforming direction are different is shown. In this case, there will be a reduction
in the received signal power leading to high packet error rate (PER) and error vector magnitude
(EVM). The results section shows these values.

Baseband Receiver

The baseband receiver has two components: packet detection and packet recovery.

If a packet is detected, the packet recovery subsystem is enabled to process the detected packet.

The packet recovery subsystem processing consists of the following steps:

1 Frequency offset estimation and correction.
2 Symbol timing and channel frequency response estimation.
3 Noise power estimation.
4 Synchronization error checking. This determines whether the packet can be decoded or not.
5 Packet decoding.

6 End-to-End Simulation

6-94

In the packet decoder subsystem, the SC data field is extracted from the synchronized received
waveform. Then, the PSDU is recovered using the extracted field, channel, and noise power
estimates.

Results

Running the simulation displays the packet error rate. The model updates the PER after processing
each packet. The model also displays the equalized symbol constellation along with the EVM
measurement. Note that for statistically valid results, long simulation times are required.

By default, the main beam of the receive antenna array points towards the direction: azimuth = 0
deg. and elevation = 0 deg.

 802.11ad Single Carrier Link with RF Beamforming in Simulink

6-95

If you change the Receiver direction value in the receive antenna array towards a proximity null
in the array radiation, the EVM increases and the packets cannot be successfully decoded.

6 End-to-End Simulation

6-96

 802.11ad Single Carrier Link with RF Beamforming in Simulink

6-97

If you change the Beamforming direction value in the RF receiver such that the main beam
points towards the transmitter, the EVM improves and packets are successfully decoded.

Exploring the Example

• Try changing the signal to noise ratio (SNR) value in the Model Parameters block. Increasing SNR
leads to lower packet error rates and improved EVM of equalized symbols constellation. The SNR

6 End-to-End Simulation

6-98

specified is the signal to noise ratio at the input to the ADC, if a single receive chain is used. The
SNR accounts for free space path loss, thermal noise and the noise figure of RF components.

• You can change the array geometry and the number of elements in an array present in the receive
antenna array block. Increasing the number of antenna elements improves the EVM. The diversity
gain due to receiver antenna array can be observed in the equalized symbols constellation.

Appendix

This example uses the following helper functions:

• dmgCFOEstimate.m
• dmgPacketDetect.m
• dmgSingleCarrierFDE.m
• dmgSTFNoiseEstimate.m
• dmgTimingAndChannelEstimate.m
• dmgUniqueWordPhaseTracking.m
• helperFrequencyOffset.m

Selected Bibliography

1 IEEE Std 802.11ad™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

 802.11ad Single Carrier Link with RF Beamforming in Simulink

6-99

802.11p Packet Error Rate Simulation for a Vehicular Channel
This example shows how to measure the packet error rate (PER) of an IEEE® 802.11p™ link using an
end-to-end simulation with a Vehicle-to-Vehicle (V2V) fading channel and additive white Gaussian
noise. The PER performance of a receiver with and without channel tracking is compared. In a
vehicular environment (high Doppler), a receiver with channel tracking performs better.

Introduction

IEEE 802.11p [1] is an approved amendment to the IEEE 802.11™ standard to enable support for
wireless access in vehicular environments (WAVE). Using the half-clocked mode with a 10 MHz
channel bandwidth, it operates in 5.85-5.925 GHz bands to support applications for Intelligent
Transportation Systems (ITS) [2].

In this example, an end-to-end simulation is used to determine the packet error rate for an 802.11p
[1] link with a fading channel at a selection of SNR points with and without channel tracking. For
each SNR point, multiple packets are transmitted through a V2V channel, demodulated and the
PSDUs are recovered. The PSDUs are compared to those transmitted to determine the number of
packet errors. For each packet, packet detection, timing synchronization, carrier frequency offset
correction and phase tracking are performed at the receiver. For channel tracking, decision directed
channel estimation [3] is used to compensate for the high Doppler spread. The figure below shows
the processing chain with channel tracking.

Waveform Configuration

An 802.11p non-HT format transmission is simulated in this example. A non-HT format configuration
object contains the format specific configuration of the transmission. This object is created using the
wlanNonHTConfig function. In this example, the object is configured for a 10 MHz channel
bandwidth and QPSK rate 1/2 (MCS 2) operation.

% Link parameters
mcs = 2; % QPSK rate 1/2
psduLen = 500; % PSDU length in bytes

% Create a format configuration object for an 802.11p transmission
cfgNHT = wlanNonHTConfig;
cfgNHT.ChannelBandwidth = 'CBW10';

6 End-to-End Simulation

6-100

cfgNHT.PSDULength = psduLen;
cfgNHT.MCS = mcs;

Channel Configuration

The V2V radio channel model defines five scenarios to represent fading conditions within a vehicular
environment. In this example, 'Urban NLOS' [4] scenario is used. This corresponds to a scenario
with two vehicles crossing each other at an urban blind intersection with building and fences present
on the corners.

% Create and configure the channel
fs = wlanSampleRate(cfgNHT); % Baseband sampling rate for 10 MHz

chan = V2VChannel;
chan.SampleRate = fs;
chan.DelayProfile = 'Urban NLOS';

Simulation Parameters

For each SNR (dB) point in the vector snr a number of packets are generated, passed through a
channel and demodulated to determine the packet error rate.

snr = 15:5:30;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point. It limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example lead to a short simulation. For statistical meaningful results
these numbers should be increased.

maxNumErrors = 20; % The maximum number of packet errors at an SNR point
maxNumPackets = 200; % Maximum number of packets at an SNR point

% Set random stream for repeatability of results
s = rng(98);

Processing SNR Points

For each SNR point, a number of packets are tested and the packet error rate is calculated. For each
packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through the channel. Different channel realizations are used for each

transmitted packet.
3 AWGN is added to the received waveform to create the desired average SNR per subcarrier after

OFDM demodulation. comm.AWGNChannel is configured to provide the correct SNR. The
configuration accounts for normalization within the channel by the number of receive antennas,
and the noise energy in unused subcarriers which are removed during OFDM demodulation.

4 The per-packet processing includes packet detection, coarse carrier frequency offset estimation
and correction, symbol timing and fine carrier frequency offset estimation and correction.

 802.11p Packet Error Rate Simulation for a Vehicular Channel

6-101

5 The L-LTF is extracted from the synchronized received waveform. The L-LTF is OFDM
demodulated and initial channel estimates are obtained.

6 Channel tracking can be enabled using the switch enableChanTracking. If enabled, the
channel estimates obtained from L-LTF are updated per symbol using decision directed channel
tracking as presented in J. A. Fernandez et al in [3]. If disabled, the initial channel estimates
from L-LTF are used for the entire packet duration.

7 The non-HT Data field is extracted from the synchronized received waveform. The PSDU is
recovered using the extracted data field and the channel estimates and noise power estimate.

% Set up a figure for visualizing PER results
h = figure;
grid on;
hold on;
ax = gca;
ax.YScale = 'log';
xlim([snr(1), snr(end)]);
ylim([1e-3 1]);
xlabel('SNR (dB)');
ylabel('PER');
h.NumberTitle = 'off';
h.Name = '802.11p ';
title(['MCS ' num2str(mcs) ', V2V channel - ' chan.DelayProfile ' profile']);

% Simulation loop for 802.11p link
S = numel(snr);
per_LS = zeros(S,1);
per_STA = per_LS;
for i = 1:S
 enableChanTracking = true;
 % 802.11p link with channel tracking
 per_STA(i) = v2vPERSimulator(cfgNHT, chan, snr(i), ...
 maxNumErrors, maxNumPackets, enableChanTracking);

 enableChanTracking = false;
 % 802.11p link without channel tracking
 per_LS(i) = v2vPERSimulator(cfgNHT, chan, snr(i), ...
 maxNumErrors, maxNumPackets, enableChanTracking);

 semilogy(snr, per_STA, 'bd-');
 semilogy(snr, per_LS, 'ro--');
 legend('with Channel Tracking','without Channel Tracking')
 drawnow;
end

axis([10 35 1e-3 1])
hold off;

% Restore default stream
rng(s);

SNR 15 dB with channel tracking completed after 51 packets, PER: 0.41176
SNR 15 dB without channel tracking completed after 59 packets, PER: 0.35593
SNR 20 dB with channel tracking completed after 201 packets, PER: 0.069652
SNR 20 dB without channel tracking completed after 109 packets, PER: 0.19266
SNR 25 dB with channel tracking completed after 201 packets, PER: 0.0199
SNR 25 dB without channel tracking completed after 182 packets, PER: 0.11538

6 End-to-End Simulation

6-102

SNR 30 dB with channel tracking completed after 201 packets, PER: 0.0099502
SNR 30 dB without channel tracking completed after 201 packets, PER: 0.094527

For meaningful results maxNumErrors, maxNumPackets should be increased. The below plot
provides results for maxNumErrors: 1000 and maxNumPackets: 10000.

 802.11p Packet Error Rate Simulation for a Vehicular Channel

6-103

Further Exploration

Try changing the channel delay profile, the length of the packet or the data rate (mcs values) and
observe the performance of channel tracking. For some configurations channel tracking provides
little performance improvement. For a small number of OFDM symbols (small PSDU length or high
MCS), temporal averaging performed during decision directed channel tracking may not be effective.
The characteristics of the channel may also limit the performance for higher order modulation
schemes (mcs > 5).

Appendix

This example uses the following helper functions and objects:

• v2vPERSimulator.m
• V2VChannel.m

Selected Bibliography
1 IEEE Std 802.11p-2010: IEEE Standard for Information technology - Telecommunications and

information exchange between systems - Local and metropolitan area networks - Specific
requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, Amendment 6: Wireless Access in Vehicular Environments, IEEE, New York, NY,
USA, 2010.

2 ETSI, https://www.etsi.org/technologies-clusters/technologies/automotive-intelligent-transport.
3 J. A. Fernandez, D. D. Stancil and F. Bai, "Dynamic channel equalization for IEEE 802.11p

waveforms in the vehicle-to-vehicle channel," 2010 48th Annual Allerton Conference on

6 End-to-End Simulation

6-104

https://www.etsi.org/technologies-clusters/technologies/automotive-intelligent-transport

Communication, Control, and Computing (Allerton), Allerton, IL, 2010, pp. 542-551. doi: 10.1109/
ALLERTON.2010.5706954

4 P. Alexander, D. Haley and A. Grant, "Cooperative Intelligent Transport Systems: 5.9-GHz Field
Trials," in Proceedings of the IEEE, vol. 99, no. 7, pp. 1213-1235, July 2011.

 802.11p Packet Error Rate Simulation for a Vehicular Channel

6-105

802.11 Dynamic Rate Control Simulation
This example shows dynamic rate control by varying the Modulation and Coding scheme (MCS) of
successive packets transmitted over a frequency selective multipath fading channel.

Introduction

The IEEE® 802.11™ standard supports dynamic rate control by adjusting the MCS value of each
transmitted packet based on the underlying radio propagation channel. Maximizing link throughput,
in a propagation channel that is time varying due to multipath fading or movement of the surrounding
objects, requires dynamic variation of MCS. The IEEE 802.11 standard does not define any
standardized rate control algorithm (RCA) for dynamically varying the modulation rate. The
implementation of RCA is left open to the WLAN device manufacturers. This example uses a closed-
loop rate control scheme. A recommended MCS for transmitting a packet is calculated at the receiver
and is available at the transmitter without any feedback latency. In a real system this information
would be conveyed through a control frame exchange. The MCS is adjusted for each subsequent
packet in response to an evolving channel condition with noise power varying over time.

In this example, an IEEE 802.11ac™ [1] waveform consisting of a single VHT format packet is
generated using the wlanWaveformGenerator function. The waveform is passed through a TGac
channel and noise is added. The packet is synchronized and decoded to recover the PSDU. The SNR is
estimated and compared against thresholds to determine which MCS is suitable for transmission of
the next packet. This figure shows the processing for each packet.

Waveform Configuration

An IEEE 802.11ac VHT transmission is simulated in this example. The VHT waveform properties are
specified in a wlanVHTConfig configuration object. In this example the object is initially configured

6 End-to-End Simulation

6-106

for a 40 MHz channel bandwidth, single transmit antenna and QPSK rate-1/2 (MCS 1). The MCS for
the subsequent packets is changed by the algorithm throughout the simulation.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW40'; % 40 MHz channel bandwidth
cfgVHT.MCS = 1; % QPSK rate-1/2
cfgVHT.APEPLength = 4096; % APEP length in bytes

% Set random stream for repeatability of results
s = rng(21);

Channel Configuration

In this example a TGac N-LOS channel model is used with delay profile Model-D. For Model-D when
the distance between the transmitter and receiver is greater than or equal to 10 meters, the model is
NLOS. This is described further in wlanTGacChannel.

tgacChannel = wlanTGacChannel;
tgacChannel.DelayProfile = 'Model-D';
tgacChannel.ChannelBandwidth = cfgVHT.ChannelBandwidth;
tgacChannel.NumTransmitAntennas = 1;
tgacChannel.NumReceiveAntennas = 1;
tgacChannel.TransmitReceiveDistance = 20; % Distance in meters for NLOS
tgacChannel.RandomStream = 'mt19937ar with seed';
tgacChannel.Seed = 0;

% Set the sampling rate for the channel
sr = wlanSampleRate(cfgVHT);
tgacChannel.SampleRate = sr;

Rate Control Algorithm Parameters

Typically RCAs use channel quality or link performance metrics, such as SNR or packet error rate, for
rate selection. The RCA presented in this example estimates the SNR of a received packet. On
reception, the estimated SNR is compared against a predefined threshold. If the SNR exceeds the
predefined threshold then a new MCS is selected for transmitting the next packet. The rcaAttack
and rcaRelease controls smooth rate changes to avoid changing rates prematurely. The SNR must
exceed the threshold + rcaAttack value to increase the MCS and must be under the threshold -
rcaRelease value to decrease the MCS. In this simulation rcaAttack and rcaRelease are set to
conservatively increase the MCS and aggressively reduce it. For the threshold values selected for
the scenario simulated in this example, a small number of packet errors are expected. These settings
may not be suitable for other scenarios.

rcaAttack = 1; % Control the sensitivity when MCS is increasing
rcaRelease = 0; % Control the sensitivity when MCS is decreasing
threshold = [11 14 19 20 25 28 30 31 35];
snrUp = [threshold inf]+rcaAttack;
snrDown = [-inf threshold]-rcaRelease;
snrInd = cfgVHT.MCS; % Store the start MCS value

Simulation Parameters

In this simulation numPackets packets are transmitted through a TGac channel, separated by a fixed
idle time. The channel state is maintained throughout the simulation, therefore the channel evolves
slowly over time. This evolution slowly changes the resulting SNR measured at the receiver. Since the
TGac channel changes very slowly over time, here an SNR variation at the receiver visible over a
short simulation can be forced using the walkSNR parameter to modify the noise power:

 802.11 Dynamic Rate Control Simulation

6-107

1 Setting walkSNR to true generates a varying SNR by randomly setting the noise power per
packet during transmission. The SNR walks between 14-33 dB (using the amplitude and
meanSNR variables).

2 Setting walkSNR to false fixes the noise power applied to the received waveform, so that channel
variations are the main source of SNR changes at the receiver.

numPackets = 100; % Number of packets transmitted during the simulation
walkSNR = true;

% Select SNR for the simulation
if walkSNR
 meanSNR = 22; % Mean SNR
 amplitude = 14; % Variation in SNR around the average mean SNR value
 % Generate varying SNR values for each transmitted packet
 baseSNR = sin(linspace(1,10,numPackets))*amplitude+meanSNR;
 snrWalk = baseSNR(1); % Set the initial SNR value
 % The maxJump controls the maximum SNR difference between one
 % packet and the next
 maxJump = 0.5;
else
 % Fixed mean SNR value for each transmitted packet. All the variability
 % in SNR comes from a time varying radio channel
 snrWalk = 22; %#ok<UNRCH>
end

% To plot the equalized constellation for each spatial stream set
% displayConstellation to true
displayConstellation = false;
if displayConstellation
 ConstellationDiagram = comm.ConstellationDiagram; %#ok<UNRCH>
 ConstellationDiagram.ShowGrid = true;
 ConstellationDiagram.Name = 'Equalized data symbols';
end

% Define simulation variables
snrMeasured = zeros(1,numPackets);
MCS = zeros(1,numPackets);
ber = zeros(1,numPackets);
packetLength = zeros(1,numPackets);

Processing Chain

The following processing steps occur for each packet:

1 A PSDU is created and encoded to create a single packet waveform.
2 A fixed idle time is added between successive packets.
3 The waveform is passed through an evolving TGac channel.
4 AWGN is added to the transmitted waveform to create the desired average SNR per subcarrier.
5 This local function processPacket passes the transmitted waveform through the TGac channel,

performs receiver processing, and SNR estimation.
6 The VHT-LTF is extracted from the received waveform. The VHT-LTF is OFDM demodulated and

channel estimation is performed.
7 The VHT Data field is extracted from the synchronized received waveform.

6 End-to-End Simulation

6-108

8 Noise estimation is performed using the demodulated data field pilots and single-stream channel
estimate at pilot subcarriers.

9 The estimated SNR for each packet is compared against the threshold, the comparison is used to
adjust the MCS for the next packet.

10 The PSDU is recovered using the extracted VHT-Data field.

For simplicity, this example assumes:

1 Fixed bandwidth and antenna configuration for each transmitted packet.
2 There is no explicit feedback packet to inform the transmitter about the suggested MCS setting

for the next packet. The example assumes that this information is known to the transmitter
before transmitting the subsequent packet.

3 Fixed idle time of 0.5 milliseconds between packets.

for numPkt = 1:numPackets
 if walkSNR
 % Generate SNR value per packet using random walk algorithm biased
 % towards the mean SNR
 snrWalk = 0.9*snrWalk+0.1*baseSNR(numPkt)+rand(1)*maxJump*2-maxJump;
 end

 % Generate a single packet waveform
 txPSDU = randi([0,1],8*cfgVHT.PSDULength,1,'int8');
 txWave = wlanWaveformGenerator(txPSDU,cfgVHT,'IdleTime',5e-4);

 % Receive processing, including SNR estimation
 y = processPacket(txWave,snrWalk,tgacChannel,cfgVHT);

 % Plot equalized symbols of data carrying subcarriers
 if displayConstellation && ~isempty(y.EstimatedSNR)
 release(ConstellationDiagram);
 ConstellationDiagram.ReferenceConstellation = wlanReferenceSymbols(cfgVHT);
 ConstellationDiagram.Title = ['Packet ' int2str(numPkt)];
 ConstellationDiagram(y.EqDataSym(:));
 drawnow
 end

 % Store estimated SNR value for each packet
 if isempty(y.EstimatedSNR)
 snrMeasured(1,numPkt) = NaN;
 else
 snrMeasured(1,numPkt) = y.EstimatedSNR;
 end

 % Determine the length of the packet in seconds including idle time
 packetLength(numPkt) = y.RxWaveformLength/sr;

 % Calculate packet error rate (PER)
 if isempty(y.RxPSDU)
 % Set the PER of an undetected packet to NaN
 ber(numPkt) = NaN;
 else
 [~,ber(numPkt)] = biterr(y.RxPSDU,txPSDU);
 end

 % Compare the estimated SNR to the threshold, and adjust the MCS value

 802.11 Dynamic Rate Control Simulation

6-109

 % used for the next packet
 MCS(numPkt) = cfgVHT.MCS; % Store current MCS value
 increaseMCS = (mean(y.EstimatedSNR) > snrUp((snrInd==0)+snrInd));
 decreaseMCS = (mean(y.EstimatedSNR) <= snrDown((snrInd==0)+snrInd));
 snrInd = snrInd+increaseMCS-decreaseMCS;
 cfgVHT.MCS = snrInd-1;
end

Display and Plot Simulation Results

This example plots the variation of MCS, SNR, BER, and data throughput over the duration of the
simulation.

1 The MCS used to transmit each packet is plotted. When compared to the estimated SNR, you can
see the MCS selection is dependent on the estimated SNR.

2 The bit error rate per packet depends on the channel conditions, SNR, and MCS used for
transmission.

3 The throughput is maximized by varying the MCS according to the channel conditions. The
throughput is calculated using a sliding window of three packets. For each point plotted, the
throughput is the number of data bits, successfully recovered over the duration of three packets.
The length of the sliding window can be increased to further smooth the throughput. You can see
drops in the throughput either when the MCS decreases or when a packet error occurs.

% Display and plot simulation results
disp(['Overall data rate: ' num2str(8*cfgVHT.APEPLength*(numPackets-numel(find(ber)))/sum(packetLength)/1e6) ' Mbps']);
disp(['Overall packet error rate: ' num2str(numel(find(ber))/numPackets)]);

plotResults(ber,packetLength,snrMeasured,MCS,cfgVHT);

% Restore default stream
rng(s);

Overall data rate: 20.631 Mbps
Overall packet error rate: 0.03

6 End-to-End Simulation

6-110

Conclusion and Further Exploration

This example uses a closed-loop rate control scheme where knowledge of the MCS used for
subsequent packet transmission is assumed to be available to the transmitter.

In this example the variation in MCS over time due to the received SNR is controlled by the
threshold, rcaAttack and rcaRelease parameters. The rcaAttack and rcaRelease are used
as controls to smooth the rate changes, this is to avoid changing rates prematurely. Try changing the
rcaRelease control to two. In this case, the decrease in MCS is slower to react when channel
conditions are not good, resulting in higher BER.

Try setting the displayConstellation to true in order to plot the equalized symbols per received
packet, you can see the modulation scheme changing over time. Also try setting walkSNR to false in
order to visualize the MCS change per packet. Here the variability in SNR is only caused by the radio
channel, rather than the combination of channel and random walk.

Further exploration includes using an alternate RCA scheme, more realistic MCS variation including
changing number of space time streams, packet size and enabling STBC for subsequent transmitted
packets.

Appendix

This example uses the following helper functions:

 802.11 Dynamic Rate Control Simulation

6-111

• vhtNoiseEstimate.m
• vhtSingleStreamChannelEstimate.m

Selected Bibliography

1 IEEE Std 802.11ac™-2013 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

Local Functions

The following local functions are used in this example:

• processPacket: Add channel impairments and decode receive packet
• plotResults: Plot the simulation results

function Y = processPacket(txWave,snrWalk,tgacChannel,cfgVHT)
 % Pass the transmitted waveform through the channel, perform
 % receiver processing, and SNR estimation.

 chanBW = cfgVHT.ChannelBandwidth; % Channel bandwidth
 % Set the following parameters to empty for an undetected packet
 estimatedSNR = [];
 eqDataSym = [];
 noiseVarVHT = [];
 rxPSDU = [];

 % Get the OFDM info
 ofdmInfo = wlanVHTOFDMInfo('VHT-Data',cfgVHT);

 % Pass the waveform through the fading channel model
 rxWave = tgacChannel(txWave);

 % Create an instance of the AWGN channel for each transmitted packet
 awgnChannel = comm.AWGNChannel;
 awgnChannel.NoiseMethod = 'Signal to noise ratio (SNR)';
 % Normalization
 awgnChannel.SignalPower = 1/tgacChannel.NumReceiveAntennas;
 % Account for energy in nulls
 awgnChannel.SNR = snrWalk-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Add noise
 rxWave = awgnChannel(rxWave);
 rxWaveformLength = size(rxWave,1); % Length of the received waveform

 % Recover packet
 ind = wlanFieldIndices(cfgVHT); % Get field indices
 pktOffset = wlanPacketDetect(rxWave,chanBW); % Detect packet

 if ~isempty(pktOffset) % If packet detected
 % Extract the L-LTF field for fine timing synchronization
 LLTFSearchBuffer = rxWave(pktOffset+(ind.LSTF(1):ind.LSIG(2)),:);

 % Start index of L-LTF field
 finePktOffset = wlanSymbolTimingEstimate(LLTFSearchBuffer,chanBW);

6 End-to-End Simulation

6-112

 % Determine final packet offset
 pktOffset = pktOffset+finePktOffset;

 if pktOffset<15 % If synchronization successful
 % Extract VHT-LTF samples from the waveform, demodulate and
 % perform channel estimation
 VHTLTF = rxWave(pktOffset+(ind.VHTLTF(1):ind.VHTLTF(2)),:);
 demodVHTLTF = wlanVHTLTFDemodulate(VHTLTF,cfgVHT);
 chanEstVHTLTF = wlanVHTLTFChannelEstimate(demodVHTLTF,cfgVHT);

 % Get single stream channel estimate
 chanEstSSPilots = vhtSingleStreamChannelEstimate(demodVHTLTF,cfgVHT);

 % Extract VHT data field
 vhtdata = rxWave(pktOffset+(ind.VHTData(1):ind.VHTData(2)),:);

 % Estimate the noise power in VHT data field
 noiseVarVHT = vhtNoiseEstimate(vhtdata,chanEstSSPilots,cfgVHT);

 % Recover equalized symbols at data carrying subcarriers using
 % channel estimates from VHT-LTF
 [rxPSDU,~,eqDataSym] = wlanVHTDataRecover(vhtdata,chanEstVHTLTF,noiseVarVHT,cfgVHT);

 % SNR estimation per receive antenna
 powVHTLTF = mean(VHTLTF.*conj(VHTLTF));
 estSigPower = powVHTLTF-noiseVarVHT;
 estimatedSNR = 10*log10(mean(estSigPower./noiseVarVHT));
 end
 end

 % Set output
 Y = struct(...
 'RxPSDU', rxPSDU, ...
 'EqDataSym', eqDataSym, ...
 'RxWaveformLength', rxWaveformLength, ...
 'NoiseVar', noiseVarVHT, ...
 'EstimatedSNR', estimatedSNR);

end

function plotResults(ber,packetLength,snrMeasured,MCS,cfgVHT)
 % Visualize simulation results

 figure('Outerposition',[50 50 900 700])
 subplot(4,1,1);
 plot(MCS);
 xlabel('Packet Number')
 ylabel('MCS')
 title('MCS selected for transmission')

 subplot(4,1,2);
 plot(snrMeasured);
 xlabel('Packet Number')
 ylabel('SNR')
 title('Estimated SNR')

 subplot(4,1,3);

 802.11 Dynamic Rate Control Simulation

6-113

 plot(find(ber==0),ber(ber==0),'x')
 hold on; stem(find(ber>0),ber(ber>0),'or')
 if any(ber)
 legend('Successful decode','Unsuccessful decode')
 else
 legend('Successful decode')
 end
 xlabel('Packet Number')
 ylabel('BER')
 title('Instantaneous bit error rate per packet')

 subplot(4,1,4);
 windowLength = 3; % Length of the averaging window
 movDataRate = movsum(8*cfgVHT.APEPLength.*(ber==0),windowLength)./movsum(packetLength,windowLength)/1e6;
 plot(movDataRate)
 xlabel('Packet Number')
 ylabel('Mbps')
 title(sprintf('Throughput over last %d packets',windowLength))

end

6 End-to-End Simulation

6-114

System-Level Simulation

7

802.11ax Multinode System-Level Simulation of Residential
Scenario Using MATLAB

This example shows how to model performance of an IEEE® 802.11ax™ [1 on page 7-0] network in
a residential scenario by using WLAN Toolbox™.

Using this example, you can -

• Model a residential scenario by configuring the network and channel parameters.
• Simulate a multinode WLAN system and visualize the network-related statistics.

The Results section plots performance metrics such as throughput, latency, and packet loss.

Residential Scenario Description

This example demonstrates a system-level simulation to evaluate the performance of an 802.11ax
network in a residential scenario. The residential scenario consists of a building with 3 floors. The
spacing between the floors is 1.5 meters. Each floor consists of four rooms, each having dimensions
10m x 10m x 3m. Each room has an access point (AP) and two stations (STAs) placed in random x-
and y- locations at a height of 1.5 meters from the floor. Each AP has data for STAs present in the
same room. The simulation scenario specifies a path loss model based on the distance between the
nodes, and the number of walls and floors traversed by the WLAN signal. This figure shows the
residential scenario simulated in this example.

7 System-Level Simulation

7-2

This example models the medium access control (MAC) layer and physical layer (PHY) of all the nodes
(APs and STAs) using abstractions. The MAC layer implements enhanced distributed channel access
(EDCA) functionality. The MAC layer uses abstraction for frame generation and decoding. Abstraction
refers to the fact that MAC layer sends and receives frame metadata instead of sending or receiving
encoded MAC frame bits. Similarly, the PHY uses abstraction for WLAN signal generation and
decoding. For more information on PHY abstraction, see Physical Layer Abstraction for System-Level
Simulation example.

This example is calibrated against Box-3 and Box-5 scenarios specified in TGax evaluation
methodology [2 on page 7-0]. The network throughput calculated for the scenarios mentioned in
TGax simulation scenarios document [3 on page 7-0] are validated against the published
calibration results from the TGax Task Group, to confirm compliance with IEEE 802.11.

Configuration Parameters

Simulation Parameters

Set the seed for the random number generator to 1. For greater accuracy in the simulation results,
change the seed and average the results over multiple simulations. Specify simulation time in
microseconds using simulationTime variable. To visualize a live state transition plot for all nodes,
set showLiveStateTransitionPlot variable to true. To visualize the table containing network
statistics at the end of simulation, set displayStatsInUITable variable to true.

 802.11ax Multinode System-Level Simulation of Residential Scenario Using MATLAB

7-3

https://www.mathworks.com/help/wlan/ug/physical-layer-abstraction-for-system-level-simulation.html
https://www.mathworks.com/help/wlan/ug/physical-layer-abstraction-for-system-level-simulation.html

rng(1,'twister'); % Seed for random number generator
simulationTime = 0.1*1e6; % Simulation time in microseconds
showLiveStateTransitionPlot = true; % Show live state transition plot for all nodes
displayStatsInUITable = true; % Display table of statistics

% Add the folder to the path for access to all helper files
addpath(genpath(fullfile(pwd, 'mlWLANSystemSimulation')));

Residential Scenario Parameters

The ScenarioParameters structure defines the size and layout of the residential building using
these parameters.

• BuildingLayout: Specifies the building layout in terms of number of rooms in each of the three
directions

• RoomSize: Specifies the size of each room in meters
• NumRxPerRoom: Specifies the number of stations per room

The example assumes one transmitting AP and two receiving STAs in each room. The hDropNodes
function randomly generates the positions of the AP and STAs within each room.

ScenarioParameters = struct;
% Number of rooms in [x,y,z] directions
ScenarioParameters.BuildingLayout = [2 2 3];
% Size of each room in meters [x,y,z]
ScenarioParameters.RoomSize = [10 10 3];
% Number of STAs per room
ScenarioParameters.NumRxPerRoom = 2;

% Obtain random positions for placing nodes
[apPositions, staPositions] = hDropNodes(ScenarioParameters);

Node Parameters

The hLoadConfiguration function loads the MAC and PHY configurations for the nodes specified
by nodeConfigs and loads the application traffic configuration for the transmitting nodes specified
by trafficConfigs. This function assigns identifiers (IDs) and positions to all the nodes in the
network.

% Get the IDs and positions of each node
[nodeConfigs, trafficConfigs] = hLoadConfiguration(ScenarioParameters, apPositions, staPositions);

The wlanNodeConfig.mat file defines the structure for specifying the MAC and PHY configuration
of a node. For more information about the detailed configuration parameters in this MAT file, use the
command hConfigurationHelp('wlanNodeConfig'). The nodeConfigs output of the
hLoadConfiguration function is an array of these structures. You can modify the MAC
configuration parameters such as format, channel bandwidth, modulation and coding scheme (MCS)
index, for the transmitted packets. You can also modify the physical layer parameters such as
transmit power, transmit gain, receive gain, noise power. For example, this code configures node-1 to
transmit packets with a fixed MCS-6.

nodeConfigs(1).TxMCS = 6

nodeConfigs=1×36 struct array with fields:
 NodePosition
 TxFormat

7 System-Level Simulation

7-4

 Bandwidth
 TxMCS
 NumTxChains
 MPDUAggregation
 DisableAck
 MaxSubframes
 RTSThreshold
 DisableRTS
 MaxShortRetries
 MaxLongRetries
 BasicRates
 Use6MbpsForControlFrames
 BandAndChannel
 CWMin
 CWMax
 AIFSSlots
 RateControl
 PowerControl
 TxPower
 TxGain
 RxGain
 EDThreshold
 RxNoiseFigure
 ReceiverRange
 FreeSpacePathloss
 PHYAbstractionType
 ⋮

The wlanTrafficConfig.mat file defines the structure for specifying the application traffic
configuration. For more information about the detailed configuration parameters in this MAT file, use
the command hConfigurationHelp('wlanTrafficConfig'). The trafficConfigs output of
the hLoadConfiguration function is an array of these structures. Each structure corresponds to a
specific destination STA node. You can modify parameters like packet size, data rate, or access
category for each application in the array. The simulation scenario in this example configures the Best
Effort (AC0) traffic from APs to STAs. For example, the first structure in the array specifies
application traffic for node-1 (AP) to node-13 (STA). For example, this code configures the
transmission of 1000 byte-sized application packets from node-1 to node-13. All other transmitters
use a default packet size of 1500 bytes.

trafficConfigs(1).PacketSize = 1000

trafficConfigs=1×24 struct array with fields:
 SourceNode
 DestinationNode
 PacketSize
 DataRateKbps
 AccessCategory

Create Network

Create transmitter and receiver sites from the node configurations. Create the building geometry
from the scenario parameters.

% Create transmitter and receiver sites
[txs,rxs] = hCreateSitesFromNodes(nodeConfigs);

 802.11ax Multinode System-Level Simulation of Residential Scenario Using MATLAB

7-5

% Create triangulation object and visualize the scenario
tri = hTGaxResidentialTriangulation(ScenarioParameters);
hVisualizeScenario(tri,txs,rxs,apPositions);

This example uses the TGax residential propagation model to determine pathloss between nodes.
Path loss is a function of the number of walls, floors, and the distance between nodes. Create a path
loss model using hTGaxResidentialPathLoss function. Create a function handle which returns the
path loss between each pair of nodes in the network using the propagation model and transmitter and
receiver sites. The hCreateWLANNodes function creates the configured WLAN nodes.

% Generate propagation model and lookup table
propModel = hTGaxResidentialPathLoss('Triangulation',tri,'ShadowSigma',0,'FacesPerWall',1);
[pl,tgaxIndoorPLFn] = hCreatePathlossTable(txs,rxs,propModel);

7 System-Level Simulation

7-6

% Create WLAN nodes
wlanNodes = hCreateWLANNodes(nodeConfigs, trafficConfigs, simulationTime, tgaxIndoorPLFn);

Simulation

Initialize the visualization and simulation parameters.

% Initialize visualization parameters and create an object for
% hStatsLogger which is a helper for retrieving, and displaying
% the statistics.
visualizationInfo = struct;
visualizationInfo.DisablePlot = ~showLiveStateTransitionPlot;
visualizationInfo.Nodes = wlanNodes;
statsLogger = hStatsLogger(visualizationInfo); % Object that handles retrieving and visualizing statistics
networkSimulator = hWirelessNetworkSimulator; % Object that handles network simulation

Run all the nodes in the network for the specified simulationTime time.

% Run the simulation
run(networkSimulator, wlanNodes, simulationTime, statsLogger);

 802.11ax Multinode System-Level Simulation of Residential Scenario Using MATLAB

7-7

% Cleanup the persistent variables used in functions
clear edcaPlotStats;

Results

Retrieve the statistics and store them in a mat file. The UI table shows all the statistics collected
during the simulation.

% Retrieve the statistics and store them in a mat file
statistics = getStatistics(statsLogger, ~displayStatsInUITable);

statisticsTable=101×36 table
 Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 Node10 Node11 Node12 Node13 Node14 Node15 Node16 Node17 Node18 Node19 Node20 Node21 Node22 Node23 Node24 Node25 Node26 Node27 Node28 Node29 Node30 Node31 Node32 Node33 Node34 Node35 Node36
 _____ _____ _____ _____ _____ _____ _____ _____ _____ ______ ______ ______ ______ ______ ______ ______ ________ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ________ ______

 ActiveOperationInFreq 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 AppTx 12500 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 AppRx 0 0 0 0 0 0 0 0 0 0 0 0 43 0 32 32 96 32 64 64 64 64 0 0 5 32 0 0 64 64 35 64 32 0 96 64
 AppRxBytes 0 0 0 0 0 0 0 0 0 0 0 0 43000 0 48000 48000 1.44e+05 48000 96000 96000 96000 96000 0 0 7500 48000 0 0 96000 96000 52500 96000 48000 0 1.44e+05 96000

7 System-Level Simulation

7-8

 AppAvgPacketLatency 0 0 0 0 0 0 0 0 0 0 0 0 28509 0 67720 78853 58339 45246 34367 75986 34050 70382 0 0 997 34062 0 0 70228 70233 21354 17515 95524 0 50997 64829
 MACInternalCollisionsAC1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 MACInternalCollisionsAC2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 MACInternalCollisionsAC3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 MACInternalCollisionsAC4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 MACBackoffAC1 261 378 486 396 261 297 459 135 351 567 261 378 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 MACBackoffAC2 0 9 135 90 0 0 99 0 90 144 117 108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 MACBackoffAC3 18 72 162 135 126 27 117 0 126 171 18 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 MACBackoffAC4 27 45 63 45 27 18 27 0 27 63 0 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 MACDataTx 72 96 192 128 128 32 69 0 160 163 32 192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 MACTxAC1 72 96 192 128 128 32 69 0 160 163 32 192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 MACTxAC2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 ⋮

You can access all the statistics from the above table by exploring the statistics.mat file.

% Save the statistics to a mat file
save('statistics.mat', 'statistics');

The hPlotNetworkStats helper function parses the collected statistics and plots the throughput,
packet loss ratio, and average packet latency values at each node. The plot shows throughput and
packet loss ratio at each transmitter (APs). The plot also shows the average packet latency
experienced at each receiver node (STAs). The throughput shows the achieved data rate at each AP in
units of megabits per second (Mbps). The packet loss ratio shows the ratio of unsuccessful data
transmissions to the total data transmissions. The average packet latency shows the average latency
experienced at each STA to receive its downlink traffic from the AP.

% Plot the throughput, packet loss ratio, and average packet latency at each node
hPlotNetworkStats(statistics, wlanNodes);

 802.11ax Multinode System-Level Simulation of Residential Scenario Using MATLAB

7-9

% Remove the folder from the path
rmpath(genpath(fullfile(pwd, 'mlWLANSystemSimulation')));

Further Exploration

To observe the variation of throughput when a STA moves within a room, you can run the simulation
for different positions of a STA with a fixed AP. You can observe the variation of throughput with
respect to distance from its AP. The set of throughputs captured at all different positions can be used
to plot a heatmap like the one shown here.

7 System-Level Simulation

7-10

References

1 IEEE P802.11ax™/D4.1. "Amendment 6: Enhancements for High Efficiency WLAN.." Draft
Standard for Information technology - Telecommunications and information exchange between
systems Local and metropolitan area networks - Specific requirements -Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

2 “TGax simulation scenarios”, doc. IEEE 802.11-14/0980r16.
3 “11ax evaluation methodology”, doc. IEEE 802.11-14/0571r12.

 802.11ax Multinode System-Level Simulation of Residential Scenario Using MATLAB

7-11

Spatial Reuse with BSS Coloring in 802.11ax Residential
Scenario

This example demonstrates how to simulate the impact of spatial reuse (SR) with basic service set
(BSS) coloring on the throughput of an IEEE® 802.11ax™ residential scenario network using
SimEvents®, Stateflow®, and WLAN Toolbox™. This example simulates non-spatial reuse groups
overlapping BSS packet detect (OBSS PD) defined in IEEE® P802.11ax™/D4.1 Amendment [1]. The
fundamental objective of this feature is to increase the network performance in a dense network
scenario by maximizing the frequency reuse between BSSs. This is achieved by adjusting OBSS PD
threshold in the range [-62, -82] dBm. Each BSS is assigned a unique color code called BSS color. The
BSS color enables 802.11ax station (STA) to decide whether the simultaneous use of frequency
spectrum along with the OBSS is allowed or not. This results in ignoring the frames from OBSS and
enables concurrent transmission of data to multiple devices in a dense network scenario mitigating
the exposed node problem. To demonstrate the SR with BSS coloring feature, the example models a
network topology consisting of four BSSs in a residential apartment of two floors. Each floor contains
two BSSs and each BSS consists of an access point (AP) and a STA. The model enables you to
configure the OBSS PD threshold values in the range [-62, -82] dBm and study its impact on the
throughput of each BSS. You can also write your own algorithm to control OBSS PD threshold levels
dynamically during the simulation.

IEEE 802.11ax OBSS PD-based Spatial Reuse Operation

In dense network scenarios consisting of legacy IEEE® 802.11 devices, multiple APs operate in the
same frequency due to limited spectrum. This resulted in an inefficient paradigm causing network
congestion and slowdown. Also, the legacy devices were unable to efficiently communicate with each
other to maximize channel resources. To address this issue, the IEEE® P802.11ax™/D4.1 Amendment
[1] introduced the OBSS PD-based SR operation to optimize the efficient reutilization of frequency
spectrum in dense network scenarios. To achieve this, the number of parallel transmissions that could
potentially improve network performance of BSSs operating in the same frequency is increased. To
increase the number of parallel transmissions, the clear channel assessment/carrier sense (CCA/CS)
threshold for the detected OBSS transmissions is adjusted to a new value called OBSS PD threshold.
The OBSS PD threshold is higher then the default CCA/CS threshold. This figure illustrates the SR
operation in an OBSS. The network topology consists of two BSSs, each containing an AP and a STA.

7 System-Level Simulation

7-12

The default CCA/CS threshold (denoted by blue dashed lines) does not enable simultaneous
transmissions between AP1 and AP2. In this case, transmission in BSS-2 must be deferred if devices
in BSS-1 occupy the channel for transmission. However, by optimally selecting the value of OBSS PD
threshold (denoted by red dashed lines), both APs can simultaneously transmit to their corresponding
STAs. This SR operation when used with BSS coloring technique improves channel utilization and
gives better throughput.

BSS Coloring

The SR operation uses BSS color identifier to enable 802.11ax devices to distinguish between
different BSSs when other devices transmit on same channel. The BSS color is a numerical identifier
of the BSS having a value in the range [1, 63]. BSS color information is present in a 6-bit BSS color
field in the HE SIG-A which is present in the preamble of 802.11ax physical layer (PHY) header. If the
color of the frame matches with the color of the BSS, it is an intra-BSS transmission as the
transmitting device belongs to the same BSS as the receiver. If the detected frame has a different
BSS color from its own, the frame is an inter-BSS frame. An 802.11ax AP can change its BSS color if
it detects an OBSS using the same color. This flowchart shows the BSS coloring procedure.

 Spatial Reuse with BSS Coloring in 802.11ax Residential Scenario

7-13

When detecting a transmission, a 802.11ax device differentiates between intra and inter-BSS frames
by inspecting the BSS color field. For intra-BSS frames, the 802.11ax devices use the default PD
threshold of -82 dBm. For inter-BSS frames, more aggressive PD threshold values are applied to
increase the number of parallel transmissions.

This is the possible use case scenario of SR with BSS coloring.

Residential scenario Consider a two-floored residential apartment.

7 System-Level Simulation

7-14

Each floor contains two BSSs and each BSS consists of an AP and an STA. In this scenario, SR with
BSS coloring would improve the aggregate throughput of the network and throughput per BSS. This
example models and simulates this use case scenario.

Model 802.11ax Residential Scenario with BSS Coloring

This example demonstrates the communication in an 802.11ax network with four BSSs containing
one AP and one station per BSS. These stations implement carrier-sense multiple access with collision
avoidance (CSMA/CA) with physical carrier sense and virtual carrier sense. The physical carrier
sensing uses the clear CCA mechanism to determine whether the medium is busy before transmitting.
Whereas, the virtual carrier sensing uses the RTS/CTS handshake to prevent the hidden node
problem. All the nodes implement virtual carrier sensing using dual network allocation vectors
(NAVs) (Intra NAV and Basic NAV) defined in IEEE® P802.11ax™/D4.1 Amendment [1].

Node Configuration

Specify a node as an AP or an STA through the NodeType mask parameter. To configure the node as
an STA, you must specify the name of the AP node associated with it through the AP Name parameter.
All the nodes configured as STA with the same AP Name belong to one BSS.

In the Application Traffic Generator block, the Destination Name parameter of an AP is always
configured to the STA nodes of the same BSS. Whereas, the Destination Name parameter of the
STA node is always configured to the same value of the AP Name parameter.

 Spatial Reuse with BSS Coloring in 802.11ax Residential Scenario

7-15

To view the components of the WLAN node, see the “802.11ax System-Level Simulation with Physical
Layer Abstraction” on page 7-52 example.

MAC Configuration

Implement these steps to configure nodes to perform SR operation.

1 Set PHY Tx Format to HE format (HE-SU or HE-EXT-SU or HE-MU-OFDMA) in MAC
configuration parameters.

2 To enable SR operation, select Enable Spatial Reuse With BSS Color option.
3 Specify the BSS color by setting the BSS Color field to a value in the range [1, 63]. All the nodes

in a BSS must be configured to the same value of BSS Color field. Each BSS must have a unique
BSS color.

4 Specify OBSS PD threshold by setting OBSS PD Threshold field to a value in the range [-62,
-82].

7 System-Level Simulation

7-16

Simulations Results

Run the simulation to visualize the parallel transmissions and get the aggregated throughput for BSS.

• Runtime visualization plot to show the time spent by each node on channel contention,
transmission, and reception.

In this plot, the mapping of nodes to BSS is as shown:

• BSS1 - Node1 and Node2
• BSS2 - Node3 and Node4
• BSS3 - Node5 and Node6
• BSS4 - Node7 and Node8

 Spatial Reuse with BSS Coloring in 802.11ax Residential Scenario

7-17

Observe that the nodes transmit the frames concurrently. Thus, the SR operation enables
simultaneous transmission of data, resulting in efficient utilization of the channel.

• Per BSS aggregated throughput plot

7 System-Level Simulation

7-18

This plot shows the per BSS aggregated throughput of the network.

You can analyze the impact of varying the OBSS PD threshold values on the aggregated network
throughput by running the simulations detailed in the following sections.

• Impact of the offered load and OBSS PD threshold on the network throughput

In each BSS, specify the STA and AP, with the AP serving to its corresponding STA. To enable STA as
transmitters, set App State of an Application Traffic Generator block to 'On'. For each BSS,
configure the AP and STA with the values shown in this table.

Parameter Value
Packet size (bytes) 1700
Packet Interval (seconds) 0.0001
Access Category Best Effort
Max A-MPDU Subframes 64
MCS 0
PHY Tx Format HE-SU
Ack Policy No Ack

 Spatial Reuse with BSS Coloring in 802.11ax Residential Scenario

7-19

RTS Threshold (bytes) 65535
Max Short Retries 10
Max Long Retries 10
Number of Transmit Chains 1
Tx Queue Size (Per Destination and Per AC) 64
Simulation time (sec) 0.5

Vary the OBSS PD Threshold as -82, -72, -68, -65, -62, for each simulation. At the end of each
simulation run, the obtained throughput value is retrieved from the statistics.mat file. Plot the
impact of offered load and OBSS PD threshold on the network throughput.

This code plots the impact of offered load and OBSS PD threshold on the average network
throughput, when AP is transmitting to its corresponding STA.

% Offered load (Mbps)
offeredLoad = [40 64 88 112 126 160];

% Throughput results for OBSS PD threshold -82 dBm at varying offered loads (Mbps)
throughput1 = [1.7640 1.7152 1.8524 1.8536 1.8020 1.8320];

% Throughput results for OBSS PD threshold -72 dBm at varying offered loads (Mbps)
throughput2 = [2.5900 2.3392 2.4860 2.4416 2.4820 2.5360];

% Throughput results for OBSS PD threshold -68 dBm at varying offered loads (Mbps)
throughput3 = [3.0040 2.9632 2.9964 2.8112 2.9036 3.0480];

% Throughput results for OBSS PD threshold -65 dBm at varying offered loads (Mbps)
throughput4 = [3.0400 3.2672 3.4012 3.2984 3.3388 3.4320];

% Throughput results for OBSS PD threshold -62 dBm at varying offered loads (Mbps)
throughput5 = [2.8780 2.9952 3.0140 3.3320 3.2708 3.2720];

% Get screen resolution
resolution = get(0, 'screensize');
screenWidth = resolution(3);
screenHeight = resolution(4);
figureWidth = screenWidth*0.7;
figureHeight = screenHeight*0.7;

% Create figure
figure('Position', [screenWidth*0.2, screenHeight*0.1, figureWidth, figureHeight])

% Retain plot
hold on

% Plot throughput obtained with OBSS PD threshold set to -82 dBm at varying
% offered loads (Mbps) and retain plot
plot(offeredLoad, throughput1,'-o')
hold on

% Plot throughput obtained with OBSS PD threshold set to -72 dBm at varying
% offered loads (Mbps) and retain plot
plot(offeredLoad, throughput2,'-x')
hold on

7 System-Level Simulation

7-20

% Plot throughput obtained with OBSS PD threshold set to -68 dBm at varying
% offered loads (Mbps) and retain plot
plot(offeredLoad, throughput3,'-+')
hold on

% Plot throughput obtained with OBSS PD threshold set to -65 dBm at varying
% offered loads (Mbps) and retain plot
plot(offeredLoad, throughput4,'-s')
hold on

% Plot throughput obtained with OBSS PD threshold set to -62 dBm at varying
% offered loads (Mbps)
plot(offeredLoad, throughput5,'-d')
grid on

% Add X-label, Y-label, and legend
xlabel('Offered load (Mbps)')
ylabel('Throughput (Mbps)')
legend('No Spatial Reuse', 'Spatial Reuse OBSS PD -72 dBm', ...
 'Spatial Reuse OBSS PD -68 dBm', 'Spatial Reuse OBSS PD -65 dBm', ...
 'Spatial Reuse OBSS PD -62 dBm', 'Location', 'northeastoutside');

% Add title
title('Impact of offered load and OBSS PD threshold on the network throughput')

 Spatial Reuse with BSS Coloring in 802.11ax Residential Scenario

7-21

Observe that the network throughput is higher when SR operation is enabled. Also, throughput
increases with an increase in the OBSS PD threshold.

• Impact of OBSS PD threshold on the throughput of each BSS

Vary the OBSS PD threshold as -82, -77, -72, -67, and -62 dBm and plot the impact on the throughput
of each BSS.

numOBSSPDValues = 5;

OBSSPDValues = {'-82', '-77', '-72', '-67', '-62'};

% Initial SR statistics
throughput = zeros(numOBSSPDValues, 1);

% Throughput results for BSS1 (Mbps)
throughputWithOutSpatialBSS1 = [2.1216 4.5696 4.5696 4.7328 3.318];

7 System-Level Simulation

7-22

% Throughput results for BSS2 (Mbps)
throughputWithSpatialReuseBSS2 = [1.9040 1.0336 1.7952 1.1686 2.448];

% Throughput results for BSS3 (Mbps)
throughputWithSpatialReuseBSS3 = [2.0672 2.0128 1.1088 2.23 3.590];

% Throughput results for BSS4 (Mbps)
throughputWithSpatialReuseBSS4 = [1.1152 2.3120 4.1616 4.706 3.726];

% Create a plot matrix with different statistics.
PlotMatrix = [throughputWithOutSpatialBSS1' throughputWithSpatialReuseBSS2'...
 throughputWithSpatialReuseBSS3' throughputWithSpatialReuseBSS4'];

nextBarOffset = 1;

% Set colors for the bars
colors = [0.9294 0.6941 0.1255;
 0.4941 0.1843 0.5569;
 0.4667 0.6745 0.1882;
 0.3020 0.7451 0.9333;
 0.6353 0.0784 0.1843;];

% Get screen resolution
resolution = get(0, 'screensize');
screenWidth = resolution(3);
screenHeight = resolution(4);
figureWidth = screenWidth*0.7;
figureHeight = screenHeight*0.7;

% Create figure
figure('Name', 'MultiNode 802.11 Network (PHY and MAC) Statistics', ...
 'Position', [screenWidth*0.2, screenHeight*0.1, figureWidth, figureHeight]);

% Set figure axis.
figAxis = gca;
hold on

% Plot using the plot matrix created
for i = 1: 5
 bar(nextBarOffset, PlotMatrix(i,1), 'FaceColor', colors(1, :))
 nextBarOffset = nextBarOffset+1;
 bar(nextBarOffset, PlotMatrix(i,2), 'FaceColor', colors(2, :))
 nextBarOffset = nextBarOffset+1;
 bar(nextBarOffset, PlotMatrix(i,3), 'FaceColor', colors(3, :))
 nextBarOffset = nextBarOffset+1;
 bar(nextBarOffset, PlotMatrix(i,4), 'FaceColor', colors(4, :))
 nextBarOffset = nextBarOffset+6;
end
lastBarOffset = nextBarOffset;

% Set legend to the plot
legend('BSS1', 'BSS2', ...
 'BSS3', 'BSS4', 'Location', 'northeastoutside');

% Name X-axis of the plot
xlabel('OBSS PD Threshold (dBm)')

% Name Y-axis of the plot

 Spatial Reuse with BSS Coloring in 802.11ax Residential Scenario

7-23

ylabel('Throughput (Mbps)')

% Gap between each tick on X-axis
tickInterval = (lastBarOffset-1)/numOBSSPDValues;

% Create ticks for X-axis
xticks(1:tickInterval:numOBSSPDValues*tickInterval)

% Add created tick labels to axis
figAxis.XTickLabel = OBSSPDValues;

% Add title
title('Impact of OBSS PD threshold on the throughput of each BSS')

Observe the increase in the throughput with SR as compared to no SR (OBSS PD Threshold -82 dBm).
As OBSS PD threshold increases, PHY discards more frames that are detected as inter-BSS, enabling
the STAs to transmit the frames concurrently. Consequently, you can also see that the throughput
increases with OBSS PD threshold.

7 System-Level Simulation

7-24

Running the simulation using the configuration parameters specified in the preceding table:

• For BSS1 & BSS4, maximum throughput is achieved when OBSS PD threshold is set to -67 dBm.
• For BSS2 & BSS3, maximum throughput is achieved when OBSS PD threshold is set to -62 dBm.

You can simulate the model for multiple runs to visualize the true impact of OBSS PD threshold
values on the network throughput.

This example enables you to model a residential scenario in a multinode IEEE 802.11ax network to
study SR with BSS coloring. The spatial reuse with BSS coloring support is added to the PHY and
MAC library blocks.The model uses the constant OBSS PD algorithm to select an OBSS PD threshold.
The simulation results validate that the throughput performance and channel efficiency increases by
using SR with BSS coloring.

Further Exploration

This example uses the constant OBSS PD algorithm. This algorithm decides whether the incoming
OBSS frame must be allowed for further processing or discarded based on a configured OBSS PD
value. You can modify the OBSS PD algorithm by updating the constantOBSSPDAlgorithm helper
function used by the EDCA MAC block present in the MAC layer.

In this example, multi-BSS configuration is possible only when SR is enabled. To compare the results
of a multi-BSS scenario with and without SR operation, configure the same value for OBSS PD
Threshold and ED Threshold parameters to simulate non-SR operation without actually disabling
the Enable Spatial Reuse with BSS Color parameter.

Appendix

The example uses these helpers:

1 edcaAssignBSSIDs.m: Assign BSS IDs
2 edcagetBSSInfo.m: Return BSS information
3 edcaValidateBSS.m: Validate the BSS
4 hDisplayNetworkStats.m: Display per BSS aggregated throughput
5 constantOBSSPDAlgorithm.m: Create a constant OBSS PD algorithm object.
6 obssPDAlgorithm.m: Create a OBSS PD algorithm object.
7 edcaFrameFormats.m: Create an enumeration for PHY frame formats.
8 edcaNodeInfo.m: Return MAC address of a node.
9 edcaPlotQueueLengths.m: Plot MAC queue lengths in the simulation.
10 edcaPlotStats.m: Plot MAC state transitions with respect to simulation times.
11 edcaStats.m: Create an enumeration for simulation statistics.
12 edcaUpdateStats.m: Update simulation statistics.
13 helperSubframeBoundaries.m : Return subframe boundaries of an A-MPDU.
14 phyTxAbstracted: Model PHY operations related to packet transmission
15 phyRxAbstracted: Model PHY operations related to packet reception
16 channelBlock: Model the channel for a node
17 addMUPadding.m: Add or remove the padding difference between an HE-SU and HE-MU PSDU
18 macQueueManagement.m: Create a WLAN MAC queue management object

 Spatial Reuse with BSS Coloring in 802.11ax Residential Scenario

7-25

19 roundRobinScheduler.m: Create round-robin scheduler object
20 calculateSubframesCount.m: Calculate the number of subframes required to form MU-PSDU
21 hCreateWLANNetworkModel: Create a WLAN network with given number of nodes
22 hSetupAbstractChannel: TGax channel setup
23 rateAdaptationARF.m: Create an auto rate fallback (ARF) algorithm object.
24 rateAdaptationMinstrelNonHT.m: Create a minstrel algorithm object.

References

1 IEEE P802.11ax™/D4.1. "Amendment 6: Enhancements for High Efficiency WLAN" Draft
Standard for Information technology - Telecommunications and information exchange between
systems Local and metropolitan area networks - Specific requirements -Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

2 IEEE Std 802.11ac™ -2016. "Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications." IEEE Standard for Information technology-Telecommunications and
information exchange between systems, Local and metropolitan area networks-Specific
requirements.

3 Wilhelmi, Francesc, Sergio Barrachina Munoz, Cristina Cano, Ioannis Selinis, and Boris Bellalta.
"Spatial Reuse in IEEE 802.11ax WLANs." ArXiv:1907.04141 [Cs], November 29, 2019.

4 Wilhelmi, Francesc, Sergio Barrachina-Munoz, and Boris Bellalta. "On the Performance of the
Spatial Reuse Operation in IEEE 802.11ax WLANs." In 2019 IEEE Conference on Standards for
Communications and Networking (CSCN) , 1-6, 2019.

7 System-Level Simulation

7-26

802.11 MAC and Application Throughput Measurement
This example shows how to measure the MAC and application layer throughput in a multi-node
802.11a/n/ac/ax network using SimEvents®, Stateflow®, and WLAN Toolbox™. The system-level
model presented in this example includes functionalities such as configuring the priority of the traffic
at the application layer, capability to generate and decode waveforms of Non-HT, HT-MF, VHT, HE-SU
and HE-EXT-SU formats, MPDU aggregation and enabling block acknowledgment of MPDUs. The
application layer throughput calculated using this model is validated against published calibration
results from the TGax Task Group [4] for Box 3 scenarios (Tests 1a, 1b, and 2a) specified in TGax
evaluation methodology [3]. The obtained application layer throughput is within the range of
minimum and maximum throughput specified in published calibration results [4].

Throughput in 802.11 Networks

The IEEE® 802.11™ working group is continually adding features to 802.11 specification [1] to
improve the throughput and reliability in WLAN networks. Throughput is the amount of data
transmitted over a period of time. Medium Access Control (MAC) layer throughput refers to the
amount of data successfully transmitted by the MAC layer over a period of time. MAC protocol data
unit (MPDU) is the unit of transmission at MAC layer. In 802.11n, MPDU aggregation was introduced
to increase the throughput. When MPDU aggregation is supported, MAC layer aggregates multiple
MPDUs into an aggregated MPDU (A-MPDU) for transmission. This reduces the overhead of channel
contention for transmitting multiple frames, resulting in enhanced throughput. In 802.11ac [1] and
802.11ax [2], the maximum limits for an A-MPDU length were increased resulting in even better
throughput in WLAN networks.

Model 802.11 Network

This example models a WLAN network with five nodes as shown in this figure. These nodes
implement carrier-sense multiple access with collision avoidance (CSMA/CA) with physical carrier
sense and virtual carrier sense. The physical carrier sensing uses the clear channel assessment (CCA)
mechanism to determine whether the medium is busy before transmitting. Whereas, the virtual
carrier sensing uses the RTS/CTS handshake to prevent the hidden node problem.

The model in the example displays various statistics such as the number of transmitted, received, and
dropped packets at PHY and MAC layers. Moreover, the runtime figures that help in analyzing/
estimating the node-level and network-level performance are also displayed in this model. This model
is validated against the published calibration results from the TGax Task Group [4] for Box 3
scenarios (Tests 1a, 1b, and 2a) specified in TGax evaluation methodology [3].

WLAN Network

 802.11 MAC and Application Throughput Measurement

7-27

Components of a WLAN Node

The components of a WLAN node are shown in this figure. The information is retrieved by pressing
the arrow button for each node in the above figure.

Application, EDCA MAC and PHY Block Enhancements

This example is an enhancement over “Multi-Node 802.11a Network Modeling with PHY and MAC”
on page 7-63 example. Refer to the example documentation page for more information about each
layer in a WLAN node. The application, the EDCA MAC and the PHY blocks used in this example has
these enhancements over “Multi-Node 802.11a Network Modeling with PHY and MAC” on page 7-
63.

Application:

The application layer has the capability to generate data with different priority levels as shown in this
figure. These priority levels are configured using Access Category property in the mask
parameters of the Application Traffic Generator block inside a WLAN node.

7 System-Level Simulation

7-28

EDCA MAC:

The EDCA MAC block used in this example has these enhancements over MAC block used in “Multi-
Node 802.11a Network Modeling with PHY and MAC” on page 7-63 example

• Generate and decode MAC frames of high efficiency single user (HE-SU), high efficiency extended
range single user (HE-EXT-SU), very high throughput (VHT), high throughput mixed format (HT-
MF) and Non-HT formats. These formats are configured using the PHY Tx Format property in
the mask parameters of the MAC EDCA block inside a WLAN node as shown in this figure.

• Aggregate MPDUs to form an A-MPDU. This can be configured by setting PHY Tx Format to one
of HT-MF, VHT, HE-SU, or HE-EXT-SU. In case of HT-MF, MPDU Aggregation property must also
be enabled for A-MPDU generation.

• Acknowledge multiple MPDUs in an A-MPDU with a single block acknowledgment (BA) frame.
MAC assumes a pre-configured BA session between the transmitter and the receiver of an A-
MPDU.

• Enable/disable acknowledgments. This can be configured using the Ack Policy property.
• Maintain separate retry limits for shorter frames (less than RTS threshold) and longer frames

(greater than or equal to RTS threshold). These limits can be configured using the Max Short
Retries and Max Long Retries properties.

• Transmit multiple streams of data using the multiple-input multiple-output (MIMO) capability. You
can configure this capability using the Number of Transmit Chains property. This property is
applicable only when the value of PHY Tx Format property is set to VHT, HE-SU, or HE-EXT-SU.
The MIMO capability can also be used for HT format through the MCS property. The range of
values [0, 7], [8, 15], [16, 23], and [24, 31] correspond to one, two, three, and four streams of data
respectively.

• Adapt the data rate according to the channel conditions through the Rate Adaptation
Algorithm property. This is applicable only when the value of PHY Tx Format property is set to
Non-HT. You can choose between Auto Rate Fallback (ARF) and Minstrel algorithms. To
maintain a constant data rate throughout the simulation, Fixed-Rate option is available.

 802.11 MAC and Application Throughput Measurement

7-29

• Enable parallel transmissions between the basic service sets (BSSs) through the Enable
Spatial Reuse with BSS Color property. This property is applicable only when PHY Tx
Format property is set to HE-SU, HE-EXT-SU, or HE-MU-OFDMA. This model does not support the
spatial reuse (SR) functionality. To study the impact of SR with BSS coloring on the network
throughput, refer “Spatial Reuse with BSS Coloring in 802.11ax Residential Scenario” on page 7-
12 example.

PHY:

Capability to generate and decode waveforms of Non-HT, HT-MF, VHT, HE-SU and HE-EXT-SU
formats

Throughput Measurement

Throughput varies for different configuration parameters pertaining to the application, MAC & PHY
layers. Any change in the configuration may either increase or decrease the throughput. You can vary
the combination of these parameters to measure and analyze the throughput.

7 System-Level Simulation

7-30

• MCS: PHY data rate
• PHY Tx Format: PHY transmission format
• Packet Size: Application packet size
• Max A-MPDU Subframes: Maximum number of subframes in an A-MPDU
• Max Tx Queue Size: MAC transmission queue size

Along with above parameters, you can also vary the node positions, Tx & Rx gains, channel loss,
number of nodes in the network, MAC contention parameters, number of transmit chains and rate
adaptation algorithms to analyze MAC throughput. This example demonstrates the measurement and
analysis of the MAC throughput by varying packet size in the Application Traffic Generator
block.

Application Packet Size

Throughput is directly proportional to the application packet size. Smaller packet size results in
greater number of packets to be transmitted. At the MAC layer, there is an overhead of contention
time for each transmitted packet. This is because the MAC layer makes sure that the channel is idle
for a specific amount of time (Refer section 10.3.2.3 of [1]) before transmitting any packet.
Therefore, as the packet size decreases, the contention overhead increases resulting in lower
throughput.

Model Configuration

You can configure the application packet size using these steps:

1 Open model WLANMACThroughputMeasurementModel.slx
2 To go inside a node subsystem, click on the downward arrow at the bottom left of the node
3 To open mask parameters of the application, double click on Application Traffic

Generator
4 To enable application, set App State to 'On'
5 Configure the value of Packet Size

Run the simulation and observe the throughput. The TGax calibration results for test-1a in [4] are
shown below:

 802.11 MAC and Application Throughput Measurement

7-31

The above plot compares the calibration results for WLAN Toolbox against the published results of
other companies listed in [4]. The blue colored curve represents the results of WLAN Toolbox, while
the grey colored curves represent the results of other companies.

Simulation Results

The simulation of the model generates:

1 A run-time visualization showing the time spent on channel contention, transmission, and
reception for each node

2 An optional run-time visualization (during the simulation) showing the number of frames queued
in MAC transmission queues for a selected node.

3 A bar graph showing metrics for each node such as number of transmitted, received, and
dropped packets at PHY and MAC layers

4 A MAT file statistics.mat with detailed statistics obtained at each layer for each node

This figure shows MAC state transitions with respect to simulation time.

7 System-Level Simulation

7-32

You can also observe the live state of the MAC layer transmission buffers using the 'Observe MAC
queue lengths' button in the above visualization.

 802.11 MAC and Application Throughput Measurement

7-33

This figure shows the network statistics at the end of simulation.

7 System-Level Simulation

7-34

Validating Application Layer Throughput with TGax Calibration Results

The TGax Task Group [4] published application throughput results for different scenarios. You can
observe the Layer 3 (above MAC layer) throughput of each node in the network in 'Throughput'
column in 'statisticsTable' stored in 'statistics.mat'. The TGax calibration scenarios for MAC simulator
published results of application throughput for a User Datagram Protocol (UDP) with Logical Link
Control (LLC) layers overhead.

To calculate application throughput from simulation results use the code below:

% Load statistics.mat (Output of the simulation) file
simulationResults = load('statistics', 'statisticsTable');
% Statistics
stats = simulationResults.statisticsTable;

% Successfully transmitted MAC layer bytes in the network
totalMACTxBytes = sum(stats.MACTxBytes);

% UDP & LLC overheads (bytes)
udpOverhead = 36;
llcOverhead = 8;

% UDP & LLC overhead (bytes) in the network
udpAndLLCOverhead = sum(stats.MACTxSuccess)*(udpOverhead + llcOverhead);

% Successfully transmitted application bytes

 802.11 MAC and Application Throughput Measurement

7-35

totalAppTxBytes = totalMACTxBytes - udpAndLLCOverhead;

% Time at which last transmission is completed in the network (Microseconds)
simulationTime = max(stats.MACRecentFrameStatusTimestamp);

% Application throughput (Mbps)
applicationThroughput = (totalAppTxBytes*8)/simulationTime;
disp(['Application Throughput = ' num2str(applicationThroughput) ' Mbps']);

Application Throughput = 4.7276 Mbps

The application throughput for different TGax calibration scenarios is plotted against different MAC
service data unit (MSDU) sizes for a simulation time of 30 seconds as shown below:

7 System-Level Simulation

7-36

 802.11 MAC and Application Throughput Measurement

7-37

7 System-Level Simulation

7-38

 802.11 MAC and Application Throughput Measurement

7-39

Further Exploration

Configuration options

You can change these configuration parameters to further explore this example:

• Application layer: Access category and packet interval
• MAC layer: RTS threshold, Tx queue size, data rate, short retry limit, long retry limit, transmitting

frame format, MPDU aggregation, ack policy, number of transmit chains and the rate adaptation
algorithms

• PHY: PHY Tx gain, PHY Rx gain, and Rx noise figure
• Channel modeling: Rayleigh fading, free space pathloss, range propagation loss and packet

receive range
• Node positions using node position allocator
• The state of each node can be visualized during the run-time through the configuration available

in the Visualizer block
• By default, the PHY transmitter and the receiver blocks run in the Interpreted execution

mode. For longer simulation time, configure all the blocks to Code generation mode for better
performance.

Related examples

Refer these examples for further exploration:

7 System-Level Simulation

7-40

• To simulate the MAC Quality of Service (QoS) traffic scheduling in 802.11a/n/ac/ax networks, refer
“802.11 MAC QoS Traffic Scheduling” on page 7-43 example.

• To model a multi-node IEEE 802.11ax network with abstracted PHY, refer “802.11ax System-Level
Simulation with Physical Layer Abstraction” on page 7-52 example.

• To model a multi-node network using Distributed Coordination Function (DCF) MAC and 802.11a
PHY, refer “Multi-Node 802.11a Network Modeling with PHY and MAC” on page 7-63 example.

This example enables you to create and configure a multi-node 802.11 network using a Simulink
model for analyzing the MAC and application layer throughput. In this model, the MAC throughput
obtained through the simulation results is used to calculate the application layer throughput. This
model is validated using the Box 3 scenarios (Tests 1a, 1b, and 2a) specified in TGax evaluation
methodology [3] to confirm that it complies with the IEEE 802.11 [1]. This example concludes that
the calculated application layer throughput is within the range of minimum and maximum throughput
specified in published calibration results [4].

Appendix

The helper functions and objects used in this example are:

1 edcaFrameFormats.m: Create an enumeration for PHY frame formats.
2 edcaNodeInfo.m: Return MAC address of a node.
3 edcaPlotQueueLengths.m: Plot MAC queue lengths in the simulation.
4 edcaPlotStats.m: Plot MAC state transitions with respect to simulation times.
5 edcaStats.m: Create an enumeration for simulation statistics.
6 edcaUpdateStats.m: Update statistics of the simulation.
7 helperAggregateMPDUs.m: Generate an A-MPDU, by creating and appending the MPDUs

containing the MSDUs in the MSDULIST.
8 helperSubframeBoundaries.m: Return subframes information of an A-MPDU.
9 phyRx.m: Model PHY operations related to packet reception.
10 phyTx.m: Model PHY operations related to packet transmission.
11 edcaApplyFading.m: Apply Rayleigh fading effect on the waveform.
12 heSIGBUserFieldDecode.m: Decode HE-SIG-B user field.
13 heCPECorrection.m: Estimate and correct common phase error.
14 heSIGBCommonFieldDecode.m: Decode HE-SIG-B common field.
15 heSIGBMergeSubchannels.m: Merge 20MHz HE-SIG-B subchannels.
16 addMUPadding.m: Add multiuser PSDU padding.
17 macQueueManagement.m: Create a WLAN MAC queue management object.
18 roundRobinScheduler.m: Create a round-robin scheduler object.
19 calculateSubframesCount.m: Return number of subframes to be aggregated.
20 interpretVHTSIGABitsFailCheck.m: Interprets the bits in VHT-SIG-A field
21 rateAdaptationARF.m: Create an auto rate fallback (ARF) algorithm object.
22 rateAdaptationMinstrelNonHT.m: Create a minstrel algorithm object.

 802.11 MAC and Application Throughput Measurement

7-41

References

1 IEEE Std 802.11™. "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications." IEEE Standard for Information technology-Telecommunications and information
exchange between systems, Local and metropolitan area networks-Specific requirements.

2 IEEE P802.11ax™/D4.1. "Amendment 6: Enhancements for High Efficiency WLAN.." Draft
Standard for Information technology - Telecommunications and information exchange between
systems Local and metropolitan area networks - Specific requirements -Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

3 IEEE 802.11-14/0571r12. "11ax Evaluation Methodology." IEEE P802.11P: Wireless LANs.
4 Baron, Stephane., Nezou, Patrice., Guignard, Romain., and Viger, Pascal. "MAC Calibration

Results." Presentation at the IEEE P802.11 - Task Group AX, September 2015.

7 System-Level Simulation

7-42

802.11 MAC QoS Traffic Scheduling
This example shows how to simulate medium access control (MAC) quality of service (QoS) traffic
scheduling in 802.11a/n/ac/ax network using SimEvents®, Stateflow®, and WLAN Toolbox™. Using
QoS, the MAC layer prioritizes the application data and allocates more resources to high priority
traffic compared to low priority traffic. The MAC layer used in this example implements the enhanced
distributed channel access (EDCA) algorithm to get access to the channel for transmission. This
example models a 802.11 network with five nodes that can be simultaneously configured with four
types of application traffic namely: Best-effort, Background, Video and Voice. The type and the
priority of application traffic is identified by the access category (AC) at the MAC layer. The derived
results show that the highest priority voice traffic incurs the lowest latency, whereas the lowest
priority background traffic results in highest latency.

QoS Scheduling in 802.11 Network

The IEEE 802.11 WLAN [1] standard supports low rate applications and provides best-effort service
at the MAC layer. The widespread use of real-time multimedia content along with deployment of time-
sensitive critical applications has created a need to provide QoS support in 802.11 networks. To
achieve this, the IEEE 802.11 TGe introduced QoS as a part of the IEEE 802.11e amendments to the
IEEE 802.11 specification. By providing QoS support, the IEEE 802.11 MAC layer prioritizes the
application data and allocates more resources to high priority traffic as compared to low priority
traffic.

Simulate QoS Network

This example models a WLAN network with five nodes as shown in this figure. These nodes
implement carrier-sense multiple access with collision avoidance (CSMA/CA) with physical carrier
sense and virtual carrier sense. The physical carrier sensing uses the clear channel assessment (CCA)
mechanism to determine whether the medium is busy before transmitting. Whereas, the virtual
carrier sensing uses the RTS/CTS handshake to prevent the hidden node problem.

Each node can be simultaneously configured with these four types of application traffic:

• Best-effort (AC0)
• Background (AC1)
• Video (AC2)
• Voice (AC3)

The AC present at the MAC layer identifies the type and the priority of the application traffic.

 802.11 MAC QoS Traffic Scheduling

7-43

The MAC layer implements the EDCA algorithm to access the channel for transmission. The EDCA
contention parameters are designed such that the high priority traffic gets more transmission
opportunities than the low priority traffic. The default configuration assigns priorities to the
application traffic in this order: Background, Best-effort, Video and Voice. However, even after using
these contention parameters, there is a chance that more than one AC obtains transmission
opportunity at the same time resulting in internal collision. If an internal collision occurs:

• The high priority AC gets the transmission opportunity
• The low priority AC is considered as a transmission failure and invokes a retransmission

procedure

This example differs from the “802.11 MAC and Application Throughput Measurement” on page 7-27
example as multiple applications at the application layer to generate different types of traffic.

Model Configuration

You can configure the application packet size using these steps:

1 Open model WLANMACQosSchedulingModel.slx
2 To go inside a node subsystem, click on the downward arrow at the bottom left of the node
3 To open mask parameters of the application, double click on Best Effort Application
4 To enable application, set App State to 'On'
5 Configure the values of Packet Size, Packet Interval, Destination Name and Access

category

7 System-Level Simulation

7-44

6 Use steps 3, 4 and 5 to configure other applications

For more configuration options, refer “802.11 MAC and Application Throughput Measurement” on
page 7-27. To add additional nodes in the network, copy and paste any existing node in the network.

Simulation Results

This example generates similar results that are obtained in the “802.11 MAC and Application
Throughput Measurement” on page 7-27. These results include:

A run-time visualization showing the time spent on channel contention, transmission, and reception
for each node. This plot shows MAC state transitions with respect to simulation time.

 802.11 MAC QoS Traffic Scheduling

7-45

During the simulation, an optional run-time visualization plot displays the number of frames queued
in MAC transmission queues for a selected node. You can observe the run-time state of the MAC layer
transmission buffers using the 'Observe MAC queue lengths' button in the above visualization.

7 System-Level Simulation

7-46

A bar graph showing metrics for each node such as number of transmitted, received, and dropped
packets at PHY and MAC layers. This plot shows the network statistics at the end of simulation.

 802.11 MAC QoS Traffic Scheduling

7-47

A MAT file 'statistics.mat' stores the detailed statistics for each layer and node in the network. Since
this example has multiple applications, the MAC layer transmits data packets from different ACs. You
can observe the number of transmissions from each AC in 'MACAC0DataTx', 'MACAC1DataTx',
'MACAC2DataTx' and 'MACAC3DataTx' columns of 'statisticsTable' stored in 'statistics.mat'. In a
given simulation, the number of transmissions per AC is directly proportional to the priority of the
AC.

In addition to the above results, this example shows MAC latencies of all ACs for the selected node in
a plot and also creates a MAT file 'macLatenciesLog.mat'. This file contains information about each
MAC frame such as:

• Entry timestamp: The time at which application packet has arrives at the MAC layer
• Node ID: The node ID of the transmitter
• AC: Access category of the packet
• Clear timestamp: Time at which packet is cleared from the MAC. A packet is cleared from the

MAC after successful reception of an acknowledgment or after completing the maximum number
of retransmission attempts.

This information is used to calculate MAC latencies per packet. Here, the MAC latency is the time
delay between a packet arriving at the MAC from the application layer, and it being cleared from the
MAC. A packet is cleared from MAC in these scenarios:

7 System-Level Simulation

7-48

• Successful transmission: A receiver sends an acknowledgment to the sender after receiving a
packet intended for it. If an acknowledgment is received by the sender, it is considered as a
successful transmission.

• Packet discard: If an acknowledgment is not received by the sender, it retransmits the packet until
the retransmission limit is reached. If an acknowledgment is not received even after completing
the maximum number of retransmissions, the packet is discarded at the MAC layer.

The voice traffic has the highest priority and hence incurs the lowest latency. Whereas, the lowest
priority of background traffic results in highest latency.

Further Exploration

Configuration options:

In this model, you can configure the MAC contention parameters for each AC. The contention
parameters for each AC are stored in 'macConfiguration.mat' as a structure containing three fields
namely aifsn, cwMin and cwMax. You can change the priority of the AC (Best-effort/Background/
Video/Voice) by changing these contention parameters. You can observe this by enabling multiple
applications in a node and changing the contention parameters of the traffic. To change the
contention parameters, use this code:

% Change the contention parameters for Background traffic
backgroundContentionParams.cwMin = 15; % CW minimum
backgroundContentionParams.cwMax = 1023; % CW maximum
backgroundContentionParams.aifsn = 7; % AIFSN slots

 802.11 MAC QoS Traffic Scheduling

7-49

% Change the contention parameters for Best-effort traffic
bestEffortContentionParams.cwMin = 15; % CW minimum
bestEffortContentionParams.cwMax = 1023; % CW maximum
bestEffortContentionParams.aifsn = 3; % AIFSN slots

% Change the contention parameters for Video traffic
videoContentionParams.cwMin = 7; % CW minimum
videoContentionParams.cwMax = 15; % CW maximum
videoContentionParams.aifsn = 2; % AIFSN slots

% Change the contention parameters for Voice traffic
voiceContentionParams.cwMin = 3; % CW minimum
voiceContentionParams.cwMax = 7; % CW maximum
voiceContentionParams.aifsn = 2; % AIFSN slots

% Save updated contention parameters to 'macConfiguration.mat'
save('macConfiguration.mat', 'backgroundContentionParams', 'bestEffortContentionParams', 'videoContentionParams', 'voiceContentionParams');

Related examples

Refer these examples for further exploration:

• To measure MAC and Application layer throughput in a multi-node 802.11a/n/ac/ax network, refer
“802.11 MAC and Application Throughput Measurement” on page 7-27 example.

• To model a multi-node IEEE 802.11ax network with abstracted PHY, refer “802.11ax System-Level
Simulation with Physical Layer Abstraction” on page 7-52 example.

• To model a multi-node network using Distributed Coordination Function (DCF) MAC and 802.11a
PHY, refer “Multi-Node 802.11a Network Modeling with PHY and MAC” on page 7-63 example.

This example enables you to configure and simulate MAC QoS traffic scheduling in 802.11 network
using a Simulink model for analyzing MAC latencies in each AC. In this model, MAC contention
parameters for each AC can be configured to change the application traffic priority at the MAC layer.
This example concludes that the voice traffic which has the highest priority, incurs the lowest latency.
Whereas, the background traffic that has the lowest priority results in highest latency.

Appendix

The helper functions and objects used in this example are:

1 edcaFrameFormats.m: Create an enumeration for PHY frame formats.
2 edcaNodeInfo.m: Return MAC address of a node.
3 edcaPlotQueueLengths.m: Plot MAC queue lengths in the simulation.
4 edcaPlotStats.m: Plot MAC state transitions with respect to simulation times.
5 edcaStats.m: Create an enumeration for simulation statistics.
6 edcaUpdateStats.m: Update statistics of the simulation.
7 edcaLogLatencies.m: Logs the given information of all frames exchanged in the network.
8 edcaPlotLatencies.m: Plots the MAC frame latencies in all access category.
9 helperAggregateMPDUs.m: Aggregate MPDUs to form an A-MPDU.
10 helperSubframeBoundaries.m : Return subframe boundaries of an A-MPDU.

7 System-Level Simulation

7-50

11 phyRx.m: Model PHY operations related to packet reception.
12 phyTx.m: Model PHY operations related to packet transmission.
13 edcaApplyFading.m: Apply Rayleigh fading effect on the waveform.
14 heSIGBUserFieldDecode.m: Decode HE-SIG-B user field.
15 heCPECorrection.m: Estimate and correct common phase error.
16 heSIGBCommonFieldDecode.m: Decode HE-SIG-B common field.
17 heSIGBMergeSubchannels.m: Merge 20MHz HE-SIG-B subchannels.
18 addMUPadding.m: Add or remove the padding difference between an HE-SU and HE-MU PSDU.
19 macQueueManagement.m: Create a WLAN MAC queue management object.
20 roundRobinScheduler.m: Create round-robin scheduler object.
21 calculateSubframesCount.m: Calculate the number of subframes required to form MU-PSDU.
22 interpretVHTSIGABitsFailCheck.m: Interprets the bits in VHT-SIG-A field
23 rateAdaptationARF.m: Create an auto rate fallback (ARF) algorithm object.
24 rateAdaptationMinstrelNonHT.m: Create a minstrel algorithm object.

References

1 IEEE Std 802.11™. "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications". IEEE Standard for Information technology - Telecommunications and information
exchange between systems - Local and metropolitan area networks - Specific requirements;
LAN/MAN Standards Committee of the IEEE Computer Society

 802.11 MAC QoS Traffic Scheduling

7-51

802.11ax System-Level Simulation with Physical Layer
Abstraction

This example demonstrates how to model a multi-node IEEE® 802.11ax™ [1] network with
abstracted physical layer (PHY) using SimEvents®, Stateflow®, and WLAN Toolbox™. A PHY
abstraction model largely reduces the complexity and the duration of system-level simulations by
replacing the actual physical layer computations. This makes it possible to evaluate systems
consisting of large number of nodes, resulting in increased scalability. Abstracted PHY models signal-
power, gain, delay, loss and interference on each packet without generating physical layer packets, as
specified by the TGax Evaluation Methodology [3].

Physical Layer Abstraction

This example shows how to model an 802.11ax network with abstracted PHY. The example presents a
variation of the system model used in the example “802.11 MAC and Application Throughput
Measurement” on page 7-27. In “802.11 MAC and Application Throughput Measurement” on page 7-
27 example, full PHY processing is modeled where waveforms are generated and decoded at the
physical layer. However, this example models an abstracted PHY where no waveforms are generated
or decoded. Abstracting the physical layer reduces the time taken for simulation at the cost of fidelity.
Fidelity refers to the degree of exactness with which the PHY is modeled in the simulation.
Simulations that tolerate low fidelity at the physical layer can use the abstracted PHY model.

The abstracted PHY operates on pre-computed packet error rate (PER) tables and equations. These
tables and equations are used to estimate the corrupted packet without any actual modulation or
demodulation of packets, resulting in a low fidelity model. Refer the example “Physical Layer
Abstraction for System-Level Simulation” on page 7-85 for more details related to the PHY
abstraction.

Abstracted Physical Layer Blocks

This section explains the blocks used for modeling the abstracted PHY and how it fits into the 802.11
[2] network model. Full PHY modeling involves operations related to waveform transmission and
reception through a fading channel. Abstracted PHY models signal-power, gain, delay, loss and
interference on each packet without generating physical layer packets. This example provides a PHY
Transmitter, a Statistical Channel, and a PHY Receiver for modeling an abstracted PHY.
These blocks are available in the library wlanAbstractedPHYLib.

Abstracted PHY Transmitter:

The Abstracted PHY Transmitter block models the transmit chain of the physical layer. This
block consumes the frame and corresponding transmission parameters from the MAC layer.
Parameters like transmit power, preamble duration, header duration and payload duration are
calculated in the block. This information is passed along with the MAC frame as the metadata to
simulate the transmission of a waveform.

7 System-Level Simulation

7-52

Interfaces to the Abstracted PHY Transmitter block are:

• MACToPHYReq: Triggers for indicating transmission start/end requests from MAC layer
• FrameToPHY: MAC frame to be transmitted
• PhyTxConfirms: Confirmation triggers to MAC layer for indicating completion of MAC layer

requests
• Waveform: Abstract waveform transmitted into the channel (MAC frame and the metadata)

Statistical Channel:

The Statistical Channel block models pathloss, propagation delay, and reception range of the
packet. To enable the estimation of loss, delay, and range at each receiver, the Statistical
Channel block must be modeled inside every node coupled with the Abstracted PHY Receiver.
Propagation delay is applied on each received packet, and the signal strength of each packet is
degraded with optional pathloss. If the receiving node is within the range, the packet is forwarded to
the Abstracted PHY Receiver with the effective signal strength. The packet is dropped if the
receiving node is outside the range of the transmitter.

Interfaces to the Statistical Channel are:

• WaveformIn: Input packet received from a PHY transmitter
• WaveformOut: Output packet intended for PHY receivers after applying channel loss

Abstracted PHY Receiver:

The Abstracted PHY Receiver block models the receive chain of the physical layer. This block
receives and processes the packet based on the received metadata. The Abstracted PHY
Receiver block models interference based on the packets received at overlapping timelines. The
received packets are processed only at these checkpoints: (a) End of the preamble duration (b) End of

 802.11ax System-Level Simulation with Physical Layer Abstraction

7-53

each subframe duration in the payload for aggregated frames (or) end of the payload duration for
non-aggregated frames.

This block also provides an option for configuring the level of abstraction through the PHY
Abstraction mask parameter. You can configure it to 'TGax Evaluation Methodology
Appendix 1' [3] to predict the performance of a link with a TGax channel model using effective
SINR mapping. Details of this procedure can be found in the example “Physical Layer Abstraction for
System-Level Simulation” on page 7-85. Alternatively, you can configure it to 'TGax Simulation
Scenarios MAC Calibration' [4] to assume a packet failure on interference, without actually
calculating the link performance. Note that the option 'TGax Evaluation Methodology
Appendix 1' works for only MCS values in the range [0-9], as the TGax Evaluation Methodology
[3] is defined only for these values.

Interfaces to the Abstracted PHY Receiver block are:

• PHYMode: Trigger for switching off the receiver function when transmission is in progress
• Waveform: Abstract waveform received from the channel (MAC frame and the metadata)
• RxIndications: Triggers to MAC for indicating channel state shift (busy/idle) events or receive

(start/end) events
• FrameToMAC: Received MAC frame

System-Level Simulation

This example simulates a network with 10 nodes in the model, WLANMultiNodeAbstractedPHYModel,
as shown in this figure. These nodes implement carrier-sense multiple access with collision avoidance
(CSMA/CA) with physical carrier sense and virtual carrier sense. The physical carrier sensing uses
the clear channel assessment (CCA) mechanism to determine whether the medium is busy before
transmitting. The virtual carrier sensing uses the RTS/CTS handshake to prevent the hidden node
problem.

7 System-Level Simulation

7-54

The positions for all the nodes in the network are configured through the node position allocator
(NPA) block in the model. The state of each node can be visualized during run-time through the
configuration available in the Visualizer block. The Channel Matrix block is a Data Store
Memory. On initialization, a TGax channel realization is generated between each pair of nodes in the
network and the resulting channel matrix per subcarrier is stored in the block. During the simulation,
each receiver node accesses the memory to obtain the channel matrix between itself and a
transmitting node to determine the link quality. In this model, nodes 1, 2, 3, 6, 7, and 8 act as both
the transmitters and receivers, while nodes 4, 5, 9, and 10 are just passive receivers.

Node Subsystem

Each node in the above model is a subsystem representing a WLAN device. Each node contains an
application layer, a MAC layer and a physical layer. The physical layer is modeled using the
abstracted PHY blocks described in the previous section. You can configure a node to transmit and
receive packets on a specific channel (frequency) by changing the Multicast tag parameter of the
Entity Multicast and the Multicast Receive Queue blocks. By default, all nodes operate on
the same channel. You can also configure the receive range for a specific node using the Packet
Receive Range parameter of the Statistical Channel block.

You can easily switch between abstracted PHY blocks available in the wlanAbstractedPHYLib and full
PHY processing blocks available in the wlanFullPHYLib.slx library of the example “802.11 MAC
and Application Throughput Measurement” on page 7-27. The interfaces to the transmitter, receiver
and channel blocks remain the same. By default, the abstracted PHY blocks run in the Interpreted
execution mode. For longer simulation time, configure all the blocks to Code generation mode
for better performance.

 802.11ax System-Level Simulation with Physical Layer Abstraction

7-55

Simulation results

Running the model simulates the WLAN network for the specified simulation time. A plot with
network-level statistics (corresponding to MAC layer) is generated at the end of simulation. Detailed
node-level statistics (corresponding to application, MAC, and physical layers) are collected during the
simulation and saved to a base workspace file statistics.mat. You can also enable an optional live
visualization, to see the state of each node during run-time, through the mask configuration of the
Visualizer block.

7 System-Level Simulation

7-56

Scalability

The above model shows a network of 10 nodes. You can create a network with a large number of
nodes by using the hCreateWLANNetworkModel function. This helper function uses the node
subsystem from this example and creates a network of WLAN nodes positioned linearly 10 meters
apart from each other. You can create different simulation scenarios and analyze the node-level or
network-level statistics with varying number of nodes. For example, the plot below shows the
retransmissions and successful transmissions relative to the total transmissions, as the number of
nodes in the network increase. The configuration parameters used for collecting the results are:

• Format: HE-SU
• Modulation and coding scheme (MCS) index: 0
• Number of subframes in A-MPDU: 1

 802.11ax System-Level Simulation with Physical Layer Abstraction

7-57

• Distance between nodes: 10 meters
• Path loss: Not applied
• PHY abstraction type: "TGax Evaluation Methodology Appendix 1"
• Range propagation: All the nodes are within range of each other
• Operating frequency: All the nodes operate in the same frequency

The plot below shows that the simulation runs faster with abstracted PHY as compared to full PHY
processing, thus making it more scalable. The configuration parameters used for collecting the
performance results are:

• Format: HE-SU
• Modulation and coding scheme (MCS) index: 0
• Number of subframes in A-MPDU: 2
• Distance between nodes: 1 meter
• Path loss: Not applied
• PHY abstraction type: "TGax Evaluation Methodology Appendix 1"
• Range propagation: All nodes are within range of each other
• Operating frequency: All the nodes operate in the same frequency
• Simulation mode: Code generation mode for all the blocks
• Simulation time: 5 seconds

7 System-Level Simulation

7-58

• Packet generation interval: 0.001 seconds

This example explained the physical layer abstraction and demonstrated a 10-node WLAN network
with abstracted PHY. This example shows that a network simulation with abstracted PHY is faster and
more scalable compared to using full PHY processing.

Further Exploration

In this example, the A-MPDUs exchanged between the nodes are deaggregated to MPDUs at the
receiving node. These MPDUs are exported to packet capture (PCAP) and packet capture next
generation (PCAPNG) format file using the pcapDump DES block. To use the pcapDump DES block, go
to wlanSystemLevelComponentsLib

Export to PCAP/PCAPNG Format File

The PCAP/PCAPNG format files contain the packet data of the network. These files are mainly
associated with network analyzers like Wireshark [5], a third party tool used to visualize and analyze
PCAP/PCAPNG files. The main advantages of using PCAP/PCAPNG files during system level
simulations are:

• Monitor the network traffic.
• Visualize and analyze the network characteristics of the data.

To duplicate the MAC layer input entities (received A-MPDUs, FrameToMAC, and PhyRxIndicator
vector) and output entities (transmitted A-MPDUs, FrameToPHY, and MACReqToPHY vector), use the

 802.11ax System-Level Simulation with Physical Layer Abstraction

7-59

Entity Replicator blocks. The MAC layer provides RxFrameToPCAP, PhyIndToPCAP,
TxFrameToPCAP, and MACReqToPCAP as inputs to the pcapDump DES block.

The pcapDump DES block contains two input ports, one for Tx/Rx A-MPDUs and other for Tx/Rx
information.

Select the capture format as pcap or pcapng. As the simulation starts, the packets exchanged
between the nodes are logged into the selected capture format file.

To capture the packet, double click the pcapDump DES block and select the parameter Capture as
Enable.

7 System-Level Simulation

7-60

A new capture file (PCAP/PCAPNG format) is created for every node. The file name corresponds to
name of the node. If name of the node is Node1, the captured file name is Node1.pcap or
Node1.pcapng.

Appendix

The example uses these helpers:

1 edcaFrameFormats.m: Create an enumeration for PHY frame formats.
2 edcaNodeInfo.m: Return MAC address of a node.
3 edcaPlotQueueLengths.m: Plot MAC queue lengths in the simulation.
4 edcaPlotStats.m: Plot MAC state transitions with respect to simulation times.
5 edcaStats.m: Create an enumeration for simulation statistics.
6 edcaUpdateStats.m: Update statistics of the simulation.
7 helperSubframeBoundaries.m : Return subframe boundaries of an A-MPDU. * phyTxAbstracted:

Model PHY operations related to packet transmission * phyRxAbstracted: Model PHY operations
related to packet reception * channelBlock: Model the channel for a node

8 addMUPadding.m: Add or remove the padding difference between an HE-SU and HE-MU PSDU
9 macQueueManagement.m: Create a WLAN MAC queue management object
10 roundRobinScheduler.m: Create round-robin scheduler object
11 calculateSubframesCount.m: Calculate the number of subframes required to form MU-PSDU *

hCreateWLANNetworkModel: Create a WLAN network with given number of nodes *
hDisplayNetworkStats: Display network level statistics * hSetupAbstractChannel: TGax channel
setup * HelperPCAPNGWriter: Create a PCAPNG file writer handle object * HelperPCAPWriter:
Create a PCAP file writer handle object * HelperWLANPacketWriter: Create a file writer handle
object that writes WLAN packets into PCAP/PCAPNG format file * HelperPCAPUtils: Provide
methods that are commonly used in PCAP helpers * createRadiotapHeader: Create a radiotap
header

 802.11ax System-Level Simulation with Physical Layer Abstraction

7-61

12 rateAdaptationARF.m: Create an auto rate fallback (ARF) algorithm object.
13 rateAdaptationMinstrelNonHT.m: Create a minstrel algorithm object.

References

1 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems Local and metropolitan area networks - Specific
requirements -Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

2 IEEE Std 802.11™ - 2016 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

3 IEEE 802.11-14/0571r12 - 11ax Evaluation Methodology.
4 IEEE 802.11-14/0980r16 - TGax Simulation Scenarios.
5 Wireshark - Go Deep. https://www.wireshark.org/. Accessed 9 Dec. 2019.

7 System-Level Simulation

7-62

https://www.wireshark.org/

Multi-Node 802.11a Network Modeling with PHY and MAC
This example shows how to model communication between multiple WLAN nodes containing medium
access control (MAC) layer and PHY using SimEvents®, Stateflow®, and WLAN Toolbox™. This
example models a 802.11 network consisting of five WLAN nodes. The distributed coordination
function (DCF) in MAC is modeled as a Discrete Event Chart, whereas the PHY is modeled using
MATLAB Discrete Event System block. The derived simulation results include a run-time plot
displaying the time spent on channel contention, transmission, and reception for each node. A plot
representing the per-node metrics such as number of transmitted, received, and dropped packets at
PHY and MAC layers is also shown.

Background

The IEEE® 802.11™ is a set of MAC and PHY specifications for WLAN implementation. A typical
WLAN network will have multiple devices (nodes) sharing the same channel resources. Each node
can have different types of applications transmitting or receiving packets from other nodes. As the
nodes share the channel, their transmissions may collide or interfere with each other.

Modeling a WLAN network with multiple nodes typically involves modeling the MAC layer, PHY,
shared communication channel, data traffic pattern, and interference. This example shows how to
model a multi-node WLAN network with 802.11a PHY and MAC using discrete event simulation.

Multi-Node 802.11a Network Model

This example models a WLAN network with five nodes. These nodes implement carrier-sense multiple
access with collision avoidance (CSMA/CA) with physical carrier sense and virtual carrier sense. The
physical carrier sensing uses the clear channel assessment (CCA) mechanism to determine whether
the medium is busy before transmitting. Whereas, the virtual carrier sensing uses the RTS/CTS
handshake to prevent the hidden node problem.

The model in the example outputs various statistics such as the number of transmitted, received, and
dropped packets at PHY and MAC layers, and plots that help in analyzing/estimating the node-level
and network-level performance.

The modeling includes:

• Multiple nodes, where each node contains an application, a MAC layer, and a PHY.
• Packets transmitted over the channel, which is shared across multiple nodes.
• A shared channel, which is simulated with these channel impairment options: free-space pathloss,

range propagation loss and multi-path fading (using Rayleigh channel model).
• A node position allocator, which is used to configure the position of nodes in the network.

In the example, nodes 1, 2, and 3 are active participants in the communication, while nodes 4 and 5
passively receive the packets over the channel.

 Multi-Node 802.11a Network Modeling with PHY and MAC

7-63

Node

Each node is modeled as a subsystem with a network stack, which includes application, MAC, and
physical layers.

• The application layer generates packets using SimEvents Entity Generator (SimEvents) block.
• The DCF in MAC is modeled as a Discrete Event Chart.
• The PHY is modeled using SimEvents Discrete Event System block.
• The shared channel is modeled inside each node in the receive path.

Application Layer

The application layer is implemented to generate and receive application traffic. It is divided into two
sub-blocks:

• AppTrafficGenerator – Uses SimEvents Entity Generator (SimEvents) block to generate data
packets with configured packet size, inter-packet interval, and destination node. These data
packets are passed to the MAC layer.

• AppTrafficReceiver – Uses SimEvents Entity Terminator (SimEvents) block to receive the data
packets from MAC layer.

MAC Layer

The MAC layer implements the DCF algorithm specified in section 10.3 of [1]. Before transmitting a
packet, the MAC layer senses the shared channel to determine the state of the channel. If the channel

7 System-Level Simulation

7-64

is idle, packet transmission is initiated. If the channel is busy, packet transmission is deferred. The
packets waiting for transmission are queued.

In the model, the MAC layer has two components: queue management and contention algorithm.

Queue Management

Packets received from the application layer are queued until the channel is available. Packets are
dequeued for transmission once the channel becomes available. The size of the queue is configurable.
The default queue size is 10.

Contention Algorithm

The contention algorithm implemented in the MAC layer is the DCF functionality specified in section
10.3 of [1]. It is implemented as a finite state machine with these six different states:

• Idle: No active operations
• Contend: Contends for the channel
• Rx: Receives and processes the frame
• WaitForRx: Waits for a response frame
• SendingData: Transmits a frame
• Eifs: Defers transmission for error recovery

 Multi-Node 802.11a Network Modeling with PHY and MAC

7-65

State Level Processing in the MAC Layer

• Initially the MAC layer is in Idle state. On receiving a packet from the application layer, the MAC
layer moves to the Contend state.

• In the Contend state, if the channel is sensed as idle for a period of DCF inter frame space (DIFS)
time followed by a random back-off time, the MAC layer moves to the SendingData state.

• In the SendingData state, a frame is transmitted, and the MAC layer moves to the WaitForRx state.
• In the WaitForRx state, the MAC layer waits for a period of ACK/CTS timeout. On receiving a

response frame, MAC initiates next frame transmission. If a response frame is not received within
the timeout period, the frame is re-transmitted.

• On receiving a clear channel assessment (CCA) as busy from the PHY layer, the MAC layer moves
to the Rx state. Frames are received and processed in the Rx state. If an errored frame is received
in the Rx state, the MAC layer waits for extended inter frame space (EIFS) time in the Eifs state. If
the frame is intended for other node, network allocation vector (NAV) is updated and transmission
is deferred until NAV becomes zero. If the frame is intended to this node, a response frame is sent
if needed.

MAC parameters such as RTS threshold, retry limit and data rates are configurable for each node.

PHY and Channel

Transmit Chain:

The MAC layer initiates the transmission by sending a transmission start request containing Tx vector
information. On receiving the start request, the PhyTx80211aDES block configures the PHY
transmission parameters with the given Tx vector, and sends the transmission start confirm to the
MAC layer. The PHY parameters are configured in a non-HT format configuration object of type
wlanNonHTConfig. On receiving the start confirm, the MAC layer sends the frame to the
PhyTx80211aDES block.

7 System-Level Simulation

7-66

The PhyTx80211aDES block generates a waveform for the MAC frame using
wlanWaveformGenerator function. It also scales the samples of waveform with the configured Tx
gain. The generated waveform is transmitted through the shared channel.

You can configure the mask properties of Tx power (dBm) and the Tx gain (dB) for the
PhyTx80211aDES block.

Channel Impairments Modeling:

Channel impairments determined by free-space path-loss model and Rayleigh multipath fading are
added to the transmitted PHY waveform. You can choose to enable or disable these impairment
models. In addition to the impairment models, the signal reception range can also be limited by an
optional range propagation loss model. To model any of these losses, the channel model must contain
both the sender and receiver positions along with the transmitted signal strength. The channel is
modeled inside each receiving node, before passing the waveform to the PhyRx80211aDES block.

Receiver Chain:

When the PhyRx80211aDES block receives a waveform, it scales the waveform with the configured
Rx gain. The PhyRx80211aDES block then applies thermal noise and interference to the received
waveform. This is done by calculating the expected signal to interference-plus-noise Ratio (SINR) at
the end of preamble, header, and payload. The calculated SINR is added to the preamble, header, and
payload of the received waveform as an Additive White Gaussian Noise (AWGN). The
PhyRx80211aDES block then compares the waveform power with the energy detection (ED)
threshold. If the waveform power is greater than the ED threshold, the PHY sends a CCA busy
indication to the MAC layer and starts decoding the waveform. Otherwise, the PHY considers the
waveform as noise and adds it as interference to the upcoming waveforms for the duration of the
current waveform. If an error is found while decoding, the PHY stops further processing of the
waveform and sends an error indication to the MAC layer. If the preamble and header are decoded
successfully, the PhyRx80211aDES block sends a start indication to the MAC layer. If the payload is
also decoded successfully, the payload is passed to the MAC layer along with a success indication.

 Multi-Node 802.11a Network Modeling with PHY and MAC

7-67

The Rx gain (dB) and the noise figure (dB) can be configured for the PhyRx80211aDES block.

Node Position Allocator

Node position allocator is used to assign initial position of nodes. It supports linear and list position
allocation strategies.

Linear Position Allocation Strategy – Places nodes uniformly in a straight line, on a 2D grid.

List Position Allocation Strategy – Assigns node positions from a list [[x1 y1 z1] [x2 y2 z2] ... [xn yn
zn]] such that (xk, yk, zk) is the position of the kth node for all k in (1, 2, ..., n).

Simulation Results

The simulation of this model generates:

1 A run-time plot depicting the time spent on channel contention, transmission, and reception for
each node.

2 A plot depicting metrics for each node such as – number of transmitted, received, and dropped
packets at PHY and MAC layers.

3 A mat file statistics.mat with detailed statistics obtained at each layer for each node.

7 System-Level Simulation

7-68

 Multi-Node 802.11a Network Modeling with PHY and MAC

7-69

Further Exploration

1 Increase the number of nodes in the network either by copying the existing nodes or by creating
a custom node using library blocks.

2 Vary the application parameters: packet size and packet interval.
3 Change the MAC parameters: RTS threshold, Tx queue size, data rate, and retry limit.
4 Change the PHY parameters: PHY Tx gain, PHY Rx gain, and Rx noise figure.
5 Vary the channel modeling parameters.
6 Change the node positions using node position allocator.
7 Compare the throughput by changing different parameters.
8 Enable sequence viewer and see the messages exchanged between the nodes and inside

components of the node.

This example presents a multi-node 802.11a network and show you how to model a communication
between multiple WLAN nodes using discrete event simulation. DCF in MAC is modeled as a Discrete
Event Chart, whereas the PHY is modeled using MATLAB Discrete Event System block. The run-time
visualization display showing the time spent on channel contention, transmission, and reception by
each node helps you to study and analyze the DCF functionality. The network communication
performance of each node is analyzed based on the plot exhibiting the node-related metrics such as
number of transmitted, received, and dropped packets at PHY and MAC layers.

7 System-Level Simulation

7-70

Limitations

1 The MAC layer retransmissions are based on a common retry counter instead of short retry count
(SRC) and long retry count (LRC) specified in section 10.3.4.4 of [1].

2 No management frames are exchanged.
3 The MAC layer in each node maintains a single sequence-number counter for all the frame

transmissions, instead of a per-destination counter.
4 Data rate adaptation at the MAC layer is not implemented.
5 MAC service data unit (MSDU) fragmentation is not implemented.
6 The interference is modeled as an AWGN with SINR derived from the signal strength of

interfering packets and thermal noise. The interference can also be modeled by combining the IQ
samples of interfering signals.

Appendix

The example uses these helpers:

1 dcfApplyFading.m: Apply Rayleigh fading effect on the waveform.
2 dcfAssignNodeIDs.m: Assign node IDs.
3 dcfDisplayStats.m: Display the statistics.
4 dcfGetNodeInfo.m: Perform get or set operation for MAC address of the given node.
5 dcfGetNodeNamesList.m: Get the list of nodes in the model.
6 dcfGenerateMACFrame.m: Generate MAC frames.
7 dcfPlotQueueLengths.m: Plot the queue lengths in the simulation.
8 dcfPlotStats.m: Plot the simulation time-line statistics.
9 dcfStats.m: Enumeration to indicate model statistics.
10 dcfUpdateStats.m: Update the statistics for the given node.
11 PhyPrimitives.m:Enumeration for indications between the PHY and the MAC layer
12 PhyRx80211aDES.m: Model PHY operations related to packet reception.
13 PhyTx80211aDES.m: Model PHY operations related to packet transmission.

References

1 IEEE Std 802.11™ – 2016 IEEE Standard for Information technology – Telecommunications and
information exchange between systems – Local and metropolitan area networks – Specific
requirements – Part 11: Wireless LAN Medium Access Control (MAC) and PHY Specifications

 Multi-Node 802.11a Network Modeling with PHY and MAC

7-71

802.11ax PHY-Focused System-Level Simulation
This example shows how to perform a PHY-focused system-level simulation for IEEE® 802.11ax™.
Part (A) validates the simulation scenario, radio characteristics, and large-scale fading model by
comparing against published calibration results. Part (B) estimates the packet error rate of the
802.11ax network by simulating individual links between active nodes under a basic clear channel
assessment scheme.

Introduction

In this example the performance of an 802.11ax [1] network in a residential apartment block is
evaluated using a PHY-focused system-level simulation.

The residential apartment block simulation scenario is specified in [2]. This consists of a building
with five floors, and twenty 10m x 10m x 3m apartments per floor. Each apartment has an access
point (AP) and one or more stations (STAs) placed in random xy-locations, a process referred to as
'dropping' nodes. This creates a basic service set (BSS) per apartment which is randomly assigned
one of three channels. The simulation scenario specifies a large-scale path loss model based on the
distance between nodes, and the number of walls and floors traversed.

The TGax evaluation methodology [3] for 'PHY System Simulation' is followed for this example:

1 APs and STAs are randomly 'dropped' within the scenario.
2 For each pair of nodes, the large-scale path loss is calculated.
3 One or more 'transmission events' is performed. Each transmission event consists of selecting

active APs and STAs based on channel access rules and determining the performance of each
link.

This example consists of two parts:

In part (A), the 'calibration' stage, the signal-to-interference-plus-noise ratio (SINR) is calculated for
multiple 'drops', assuming downlink interfering transmissions. SINR captures long-term radio
characteristics. The cumulative distribution function (CDF) of the SINR is compared with published
results from the TGax Task Group [4].

In part (B), the 'PHY system-level simulation' stage, for each transmission event the PHY layer is
modeled for individual links. A basic clear channel assessment (CCA) scheme is used to control which
APs are active. Waveforms for the signal of interest and interference, impaired by fading channel
models, are generated and combined. The resultant packets are processed by a receiver to recover
the packet of interest. The average packet error rate for the network is calculated.

7 System-Level Simulation

7-72

The two parts of this example can be disabled using the parameters calibrate and
systemLevelSimulation. A figure displaying the simulation scenarios, nodes, active links, and
interference is displayed when showScenarioPlot is true.

calibrate = true; % To execute Part A calibration test
systemLevelSimulation = true; % To execute Part B system-level simulation
showScenarioPlot = true; % To show dynamic simulation plotting updates

Simulation Parameters

The major simulation parameters are defined as either belonging to Physical Layer (PHY), Medium
Access Control Layer (MAC), scenario, or simulation. In this example the PHY and MAC parameters
are assumed to be the same for all nodes.

PHYParameters = struct;
PHYParameters.TxPower = 20; % Transmitter power in dBm
PHYParameters.TxGain = 0; % Transmitter antenna gain in dBi
PHYParameters.RxGain = -2; % Receiver antenna gain in dBi
PHYParameters.NoiseFigure = 7; % Receiver noise figure in dB
PHYParameters.NumTxAntennas = 1; % Number of transmitter antennas
PHYParameters.NumRxAntennas = 1; % Number of receiver antennas
PHYParameters.ChannelBandwidth = 'CBW80'; % Bandwidth of system
PHYParameters.TransmitterFrequency = 5e9; % Transmitter frequency in Hz

MACParameters = struct;
MACParameters.NumChannels = 3; % Number of non-overlapping channels
MACParameters.CCALevel = -70; % Transmission threshold in CCA algorithm (dBm)

The scenario parameters define the size and layout of the residential building as per [3].

% Number of Rooms in [x,y,z] directions
ScenarioParameters = struct;
ScenarioParameters.BuildingLayout = [10 2 5];

% Size of each room in meters [x,y,z]
ScenarioParameters.RoomSize = [10 10 3];

% Number of receivers per room. Note that only one receiver (STA) can be
% active at any given time.
ScenarioParameters.NumRxPerRoom = 1;

The NumDrops and NumTxEventsPerDrop parameters control the length of the simulation. For this
example, these parameters are configured for a short simulation, but for meaningful results these
should be increased.

A 'drop' randomly places transmitters and receivers within the scenario and selects the channel for a
BSS. A 'transmission' event randomly selects transmitters and receivers for transmissions according
to basic channel access rules.

SimParameters = struct;
SimParameters.NumDrops = 3;
SimParameters.NumTxEventsPerDrop = 2;

Generate Transmitter Sites

Before the main body of the simulation, the transmitter site objects txsite are generated and
assigned room names of the form 'Room#' for ease of reference. One transmitter (AP) per room is
assumed. Each transmitter is assumed to be isotropic.

 802.11ax PHY-Focused System-Level Simulation

7-73

% Total number of transmitters, assuming one transmitter (tx) per room
numTx = prod(ScenarioParameters.BuildingLayout);

% Create transmitter sites with and isotropic antenna element
roomNames = strings(1,numTx);
for siteInd = 1:numTx
 roomNames(siteInd) = "Room " + siteInd;
end
txs = txsite('cartesian','Name',roomNames,...
 'TransmitterFrequency',PHYParameters.TransmitterFrequency, ...
 'TransmitterPower',10.^((PHYParameters.TxPower+PHYParameters.TxGain-30)/10),...
 'Antenna','isotropic');

Generate Receiver Sites

The receive site objects rxsite are generated and assigned names of the form 'Room#-STA#' for
ease of reference. The Scenario parameter NumRxPerRoom is used to define how many receivers
(STAs) are present in each room. Each receiver is assumed to be isotropic.

% Total number of receivers, assuming one transmitter (tx) per room
numRx = numTx*ScenarioParameters.NumRxPerRoom;

% Create receiver sites
roomNames = strings(1,numRx);
for siteInd = 1:numRx
 roomNames(siteInd) = "Room " + (mod(siteInd-1,numTx)+1) + "-" + ceil(siteInd/numTx);
end
rxs = rxsite('cartesian','Name',roomNames,'Antenna','isotropic');

% Receiver noise power in dBm
T = 290; % Temperature (Kelvin)
k = physconst('Boltzmann'); % Boltzmann constant
% Sample rate (Hz)
fs = wlanSampleRate(wlanHESUConfig('ChannelBandwidth',PHYParameters.ChannelBandwidth));
rxNoisePower = 10*log10(k*T*fs)+30+PHYParameters.NoiseFigure;

Part A - Align Long-Term Radio Characteristics

In this section, the simulation scenario, radio characteristics, and large-scale fading model are
verified by performing the TGax Evaluation Methodology Box 1 Test 2 Downlink Only calibration test
[3]. This test calculates the SINR at all receivers (STAs) assuming all transmitters (APs) are active.
Multiple drops of transmitters and receivers are performed as part of the simulation. One active
receiver is selected per drop.

The SINR for each receiver is calculated and aggregated over all drops simulated to generate a CDF
curve. This curve is compared with the calibration results provided in [4].

A plot showing the node positions, active links, and interfering links is generated per drop. Individual
channels can be hidden and shown in the plot by clicking the corresponding legend entry.

seed = rng(6); % Seed random number generator and store state

if showScenarioPlot
 hGrid = tgaxBuildResidentialGrid(ScenarioParameters.RoomSize,ScenarioParameters.BuildingLayout, ...
 numTx,numRx,MACParameters.NumChannels);
end

7 System-Level Simulation

7-74

if calibrate

fprintf('Running calibration ...\n');

% Pre-allocate output
output = struct;
output.sinr = zeros(SimParameters.NumDrops,numTx); % for storing SINR values
for drop = 1:SimParameters.NumDrops
 % Drop receivers in each room
 [association,txChannels,rxChannels,txPositions,rxPositions] = tgaxDropNodes(...
 txs,rxs,ScenarioParameters,MACParameters.NumChannels);

 % All transmitters active
 activeTx = true(numTx,1);

 % Only pick one receiver per Room
 rxAlloc = randi([1 ScenarioParameters.NumRxPerRoom],numTx,1);
 activeRx = reshape(rxAlloc==1:ScenarioParameters.NumRxPerRoom,[],1);

 % Generate propagation model
 propModel = TGaxResidential('roomSize',ScenarioParameters.RoomSize);

 % Get the index of the transmitter for each receiver
 tnum = repmat((1:numTx),1,numRx/numTx);

 % SINR calculation - loop over each non-overlapping channel
 numChannels = numel(unique(txChannels));
 for k = 1:numChannels
 % Use kth non-overlapping channel
 tind = txChannels == k;
 rind = false(size(activeRx));
 rind(activeRx) = rxChannels(activeRx) == k;
 % Get the index of the transmitter of interest for each active receiver
 tsigind = tnum(rind);

 % Calculate SNR
 output.sinr(drop,tind) = sinr(rxs(rind),txs(tind),...
 'ReceiverGain',PHYParameters.RxGain,...
 'ReceiverNoisePower',rxNoisePower,...
 'PropagationModel',propModel,...
 'SignalSource',txs(tsigind));
 end

 % Plot nodes and links
 if showScenarioPlot % update plot data
 mask = txChannels==rxChannels';
 tgaxUpdatePlot(hGrid,txPositions,rxPositions,activeTx,activeRx,mask,txChannels,rxChannels, ...
 sprintf('Box 1 Test 2 "downlink only" calibration, drop #%d/%d',drop,SimParameters.NumDrops));
 end
end

% Plot the CDF of SINR and compare with calibration curves
tgaxCalibrationCDF(output.sinr,'SS1Box1Test2','Long-term Radio Characteristics');

fprintf('Calibration complete \n')

end

 802.11ax PHY-Focused System-Level Simulation

7-75

Running calibration ...
Calibration complete

7 System-Level Simulation

7-76

This example simulates a small number of drops. Therefore, for a more meaningful comparison the
number of drops simulated should be increased. The calibration result for 100 drops is shown below:

 802.11ax PHY-Focused System-Level Simulation

7-77

Part B - PHY-focused System-Level Simulation

In this section, the scenario and path-loss model calibrated in part A are used to perform a PHY-
focused system-level simulation and determine the packet error rate for the network. This simulation
is described as PHY-focused as the PHY is not abstracted and the MAC is simplified. Each active link
is modeled using baseband transmitter and receiver processing. A very simple MAC assumes at each
transmission event all transmitters (APs) wish to transmit, and one receiver (STA) per BSS is the
recipient. A simple CCA algorithm is used to control channel access between transmitters as specified
in Figure 4 of [3]. The CCA algorithm enables random transmitters if the signal power received from
transmitters that have already been activated does not exceed the CCA threshold,
MACParameters.CCAThreshold.

The received signal power from all possible interfering transmitters is calculated at each active
receiver. If the received power from an interfering transmitter is above the noise floor of the receiver,
then the link is modeled with full baseband transmitter and receiver processing. For each modeled
link an HE single-user packet is generated and passed through a TGax Model-D NLOS stationary
indoor channel model. At the receiver, the waveforms from the transmitter of interest and all
interfering transmitters are scaled by the expected path-loss and combined to create a waveform
containing the signal of interest plus interference. All waveforms are time aligned. The receiver
performs synchronization, demodulation, and decoding to attempt to recover the payload. The
decoded payload is compared to the PSDU transmitted in the BSS to determine if the packet has been
recovered successfully.

7 System-Level Simulation

7-78

In this example the transmission and channel parameters are assumed to be the same for all nodes.
The transmission configuration for all packets is one space-time stream, no space-time block coding
and 16-QAM rate-1/2 (MCS 3).

if systemLevelSimulation

% Pre-allocate outputs
output.numPkts = zeros(numRx,1);
output.numPktErrors = zeros(numRx,1);
output.sinrMeas = nan(numRx,SimParameters.NumTxEventsPerDrop,SimParameters.NumDrops);
output.sinrEst = nan(numRx,SimParameters.NumTxEventsPerDrop,SimParameters.NumDrops);
output.pktErrorRate = 0;

% For each possible transmitter create a waveform configuration. In this
% example the link and radio parameters are the same for all nodes.
cfgHEBase = wlanHESUConfig;
cfgHEBase.ChannelBandwidth = PHYParameters.ChannelBandwidth; % Channel bandwidth
cfgHEBase.NumTransmitAntennas = PHYParameters.NumTxAntennas; % Number of transmit antennas
cfgHEBase.SpatialMapping = 'Fourier'; % Spatial mapping matrix
cfgHEBase.NumSpaceTimeStreams = 1; % Number of space-time streams
cfgHEBase.GuardInterval = 0.8; % Guard interval duration
cfgHEBase.HELTFType = 4; % HE-LTF compression mode
cfgHEBase.APEPLength = 1e3; % Payload length in bytes
cfgHEBase.ChannelCoding = 'LDPC'; % Channel coding
cfgHEBase.MCS = 3; % Modulation and coding scheme
cfgHE = cell(numTx,1);
for txidx = 1:numTx
 cfgHE{txidx} = cfgHEBase;
end

fprintf('Running System Level Simulation ...\n')
for drop = 1:SimParameters.NumDrops
 fprintf(' Running drop #%d/%d ...\n',drop,SimParameters.NumDrops);

 % Drop receivers in each room
 [association,txChannels,rxChannels,txPositions,rxPositions] = tgaxDropNodes(...
 txs,rxs,ScenarioParameters,MACParameters.NumChannels);

 % Generate propagation model
 propModel = TGaxResidential('roomSize',ScenarioParameters.RoomSize);

 % Calculate signal strength for all links
 signalStrength = sigstrength(rxs,txs,propModel,'Type','power',...
 'ReceiverGain',PHYParameters.RxGain); % all signal strengths in dBm

 % Threshold signals below noise level to reduce simulation time
 signalStrength(signalStrength < rxNoisePower) = -Inf;

 % Threshold signals that are not on same non-overlapping channel
 signalStrength(~(txChannels == rxChannels')) = -Inf;

 % Mask the transmitter-receiver links that are non-negligible to
 % simulate and get the linear indices
 nonnegligibleMask = signalStrength > -Inf;

 % Reset the non-negligible channels to create a new realization for the
 % current drop
 nonnegligibleIdx = find(nonnegligibleMask)';

 802.11ax PHY-Focused System-Level Simulation

7-79

 % For each possible active link in a drop create a channel
 % configuration. In this example the link and radio parameters are the
 % same for all nodes.
 tgaxChan = cell(numel(nonnegligibleIdx),1);
 for i = 1:numel(nonnegligibleIdx)
 % Index of transmitter for a given link
 txIdx = mod(nonnegligibleIdx(i)-1,numTx)+1;
 % Channel configuration. The channel realization for each link is
 % different as the global random stream is used.
 tgaxChanBase = wlanTGaxChannel;
 tgaxChanBase.DelayProfile = 'Model-D';
 tgaxChanBase.NumTransmitAntennas = cfgHE{txIdx}.NumTransmitAntennas;
 tgaxChanBase.NumReceiveAntennas = PHYParameters.NumRxAntennas;
 tgaxChanBase.TransmitReceiveDistance = 10; % Distance in meters for NLOS
 tgaxChanBase.ChannelBandwidth = cfgHE{txIdx}.ChannelBandwidth;
 tgaxChanBase.LargeScaleFadingEffect = 'None';
 tgaxChanBase.EnvironmentalSpeed = 0; % m/s, stationary
 tgaxChanBase.SampleRate = fs;
 tgaxChanBase.NormalizeChannelOutputs = false;

 % Store in cell array and reset the channel to generate a new
 % response
 tgaxChan{i} = tgaxChanBase;
 reset(tgaxChan{i});
 end

 for txevent = 1:SimParameters.NumTxEventsPerDrop
 fprintf(' Running transmission event #%d/%d ...\n',txevent,SimParameters.NumTxEventsPerDrop);

 % Determine active transmitters and receivers with Clear Channel Assessment
 [activeTx,activeRx] = tgaxCCA(signalStrength,MACParameters.CCALevel);

 % Plot scenario and links
 if showScenarioPlot
 tgaxUpdatePlot(hGrid,txPositions,rxPositions,activeTx,activeRx,nonnegligibleMask,txChannels,rxChannels, ...
 sprintf('PHY System-Level Simulation, Drop #%d/%d, Transmission Event #%d/%d', ...
 drop,SimParameters.NumDrops,txevent,SimParameters.NumTxEventsPerDrop));
 end

 % Extract elements for active links using activeTx and activeRx
 cfgHEActive = cfgHE(activeTx);
 associationActive = association(activeTx,activeRx);
 nonnegligibleMaskActive = nonnegligibleMask(activeTx,activeRx);
 signalStrengthActive = signalStrength(activeTx,activeRx);

 % Create array containing active channels
 tgaxChanActive = cell(size(associationActive));
 matchIdx = nonnegligibleIdx==find(activeTx&activeRx');
 tgaxChanActive(nonnegligibleMaskActive) = tgaxChan(any(matchIdx,1));

 % Generate a waveform for each non-negligible active link and
 % combine waveforms for each receiver
 [rxWavs,txPSDUActive,signalPower,interfPower] = tgaxGenerateRxWaveforms(...
 cfgHEActive,tgaxChanActive,nonnegligibleMaskActive,signalStrengthActive,associationActive);

 % Run PHY link simulation for each link and determine if the packet
 % has been decoded successfully. The estimated interference power

7 System-Level Simulation

7-80

 % is passed to the receiver in the place of an interference power
 % measurement algorithm.
 numActiveRxs = sum(activeRx);
 pktError = false(numActiveRxs,1);
 sinrMeas = nan(numActiveRxs,1);
 for rxIdx = 1:numActiveRxs
 [pktError(rxIdx),sinrMeas(rxIdx)] = tgaxModelPHYLink(...
 rxWavs{rxIdx},cfgHEActive{rxIdx},rxNoisePower,interfPower(rxIdx),txPSDUActive{rxIdx});
 end

 % Store output for active receivers
 output.numPktErrors(activeRx) = output.numPktErrors(activeRx)+pktError;
 output.numPkts(activeRx) = output.numPkts(activeRx) + 1;
 output.sinrMeas(activeRx,txevent,drop) = sinrMeas;

 % Calculate the expected SINR at each receiver
 sinrEst = 10*log10(signalPower./(interfPower+10^((rxNoisePower-30)/10)));
 output.sinrEst(activeRx,txevent,drop) = sinrEst;
 end
end

% Calculate average packet error rate
output.pktErrorRate = sum(output.numPktErrors)/sum(output.numPkts);

disp('Simulation complete')
disp(['Average packet error rate for transmitters: ' num2str(output.pktErrorRate)]);

end

rng(seed); % Restore random state

Running System Level Simulation ...
 Running drop #1/3 ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...
 Running drop #2/3 ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...
 Running drop #3/3 ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...
Simulation complete
Average packet error rate for transmitters: 0.054152

 802.11ax PHY-Focused System-Level Simulation

7-81

Further Exploration

The PHY-focused system-level simulation demonstrated in this example can be used to explore the
impact of PHY-level parameters on system performance. For example, the plot below shows the
network average packet error rate for different values of CCA threshold for 50 drops and 2
transmission events per drop.

7 System-Level Simulation

7-82

Appendix

This example uses the following helper functions:

• tgaxBuildResidentialGrid.m
• tgaxCalibrationCDF.m
• tgaxCCA.m
• tgaxDropNodes.m
• tgaxGenerateRxWaveforms.m
• tgaxModelPHYLink.m
• TGaxResidential.m
• tgaxUpdatePlot.m

Selected Bibliography

1 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

2 IEEE 802.11-14/0980r16 - TGax Simulation Scenarios.
3 IEEE 802.11-14/0571r12 - 11ax Evaluation Methodology.

 802.11ax PHY-Focused System-Level Simulation

7-83

4 IEEE 802.11-14/0800r30 - Box 1 and Box 2 Calibration Results.

7 System-Level Simulation

7-84

Physical Layer Abstraction for System-Level Simulation
This example demonstrates IEEE® 802.11ax™ physical layer abstraction for system-level simulation.
A link quality model and link performance model based on the TGax evaluation methodology are
presented and validated by comparing with published results.

Introduction

Modeling the full physical layer processing at each transmitter and receiver when simulating large
networks is computationally expensive. Physical layer abstraction, or link-to-system mapping is a
method to run simulations in a timely manner by accurately predicting the performance of a link in a
computationally efficient way.

This example demonstrates physical layer abstraction for the data portion of an 802.11ax [1 on page
7-0] packet based on the TGax evaluation methodology [2 on page 7-0].

There are two parts to the physical layer abstraction model [3 on page 7-0 , 4 on page 7-0]:

• The link quality model calculates the post-equalizer signal to interference and noise ratio
(SINR) per subcarrier. For a receiver, this is based on the location and transmission characteristics
of the transmitter of interest, and interfering transmissions, and the impact of large- and small-
scale fading.

• The link performance model predicts the instantaneous packet error rate (PER), and therefore
transmission success of an individual packet, given the SINR per subcarrier and coding
parameters used for the transmission.

The example is split into two parts:

• Part A on page 7-0 demonstrates the link quality model used to obtain the SINR per subcarrier
and validates it by comparing the results for a residential scenario as per the box 2 tests in the
TGax evaluation methodology. The objective of box 2 tests is to align the distribution of small and
large scale fading channels with MIMO configurations of TGax contributors.

• Part B on page 7-0 demonstrates the link performance model used to estimate the PER, and
compares the result of using the abstraction against a link-level simulation with a fading TGax
channel model as per the box 0 tests in the TGax evaluation methodology. The objective of box 0
tests is to align PHY abstractions of TGax contributors.

Part A - Link Quality Model

The link quality model implements the box 2 SINR equation from the TGax Evaluation Methodology.
The multiple-input-multiple-output (MIMO) SINR per subcarrier (index m) and spatial stream (index
j) between the transmitter and receiver of interest is given by

SINRRX
TX m, j =

SRX
TX m, j

IsRX
TX m, j + IoRX

TX m, j + N m, j
.

 Physical Layer Abstraction for System-Level Simulation

7-85

The SINR takes into account the path-loss and fading channels between all transmitters and the
receiver, and precoding applied at the transmitters. The power of the signal of interest is given by

SRX
TX m, j = PRX

TX TRX m j
HHRX

TX m WTX m j
2,

where PRX
TX is the received power of the signal of interest,TRX is the linear receiver filter, HRX

TXis the
channel matrix between the transmitter and receiver of interest, and WTX is the precoding matrix
applied at the transmitter.

The power of intra-user interference is given by

IsRX
TX m, j = PRX

TX TRX m j
HHRX

TX m WTX m 2− SRX
TX m, j .

The power of inter-user interference is given by

IoRX
TX m, j = ∑

k
∑

i ∈ Ω k
PRX

TX TRX m j
HHRX

TXi m WTXi m
2
,

where Ω k is the set of interfering transmitters in the kth basic service set (BSS)

The noise power is given by

N m, j = TRX m j
2N0,

where N0 is the noise power spectral density.

Generate a Channel Matrix per Subcarrier

The link quality model requires a channel matrix per subcarrier. Calculate the channel matrix from
the path gains returned from the fading channel model wlanTGaxChannel by using the
helperPerfectChannelEstimate() helper function. Efficiently generate path gains by setting the
ChannelFiltering property of wlanTGaxChannel to false.

sprev = rng('default'); % Seed random number generator and store previous state

% Get an HE OFDM configuration: 80 MHz channel bandwidth, 3.2 us guard
% interval
ofdmInfo = wlanHEOFDMInfo('HE-Data','CBW80',3.2);
k = ofdmInfo.ActiveFrequencyIndices;

% Configure channel to return path gains for one OFDM symbol
tgax = wlanTGaxChannel;
tgax.ChannelBandwidth = 'CBW80';
tgax.SampleRate = 80e6; % MHz
tgax.ChannelFiltering = false;
tgax.NumSamples = ofdmInfo.FFTLength+ofdmInfo.CPLength;

% Generate channel matrix per subcarrier for signal of interest
pathGains = tgax(); % Get path gains
chanInfo = info(tgax); % Get channel info for filter coefficients
chanFilter = chanInfo.ChannelFilterCoefficients;
Hsoi = helperPerfectChannelEstimate(pathGains,chanFilter, ...
 ofdmInfo.FFTLength,ofdmInfo.CPLength,ofdmInfo.ActiveFFTIndices);

7 System-Level Simulation

7-86

% Generate channel matrix per subcarrier for interfering signal
reset(tgax); % Get a new channel realization
pathGains = tgax();
Hint = helperPerfectChannelEstimate(pathGains,chanFilter, ...
 ofdmInfo.FFTLength,ofdmInfo.CPLength,ofdmInfo.ActiveFFTIndices);

SINR Calculation

Calculate and visualize the post-equalizer SINR per subcarrier with the calculateSINR and
plotSINR helper functions.

Psoi = -20; % Signal of interest received power (dBm)
Pint = -45; % Interfering signal received power (dBm)
N0 = -85; % Noise power (dBm)
W = ones(ofdmInfo.NumTones,1); % Precoding matrix (assume no precoding)

sinr = calculateSINR(Hsoi,db2pow(Psoi-30),W,db2pow(N0-30),{Hint},db2pow(Pint-30),{W});

plotSINR(sinr,Hsoi,Psoi,Hint,Pint,N0,k);

TGax Evaluation Methodology Box 2 - Verify SINR Calibration

This section validates the SINR calculation by comparing the cumulative density function (CDF) of
per-subcarrier SINRs with calibration results provided by the TGax working group. We compare the
SINR calculation with results published by TGax [5 on page 7-0] for box 2, test 3: "downlink
transmission per basic channel access rule" for the residential scenario.

 Physical Layer Abstraction for System-Level Simulation

7-87

For more information about the scenario, and for the results of long-term SINR calibration see the
“802.11ax PHY-Focused System-Level Simulation” on page 7-72 example.

The major simulation parameters are defined as either belonging to Physical Layer (PHY), Medium
Access Control Layer (MAC), scenario, or simulation. In this example the PHY and MAC parameters
are assumed to be the same for all nodes.

sinrCalibration = ; % Disable box 2 calibration
if sinrCalibration

PHYParams = struct;
PHYParams.TxPower = 20; % Transmitter power in dBm
PHYParams.TxGain = 0; % Transmitter antenna gain in dBi
PHYParams.RxGain = -2; % Receiver antenna gain in dBi
PHYParams.NoiseFigure = 7; % Receiver noise figure in dB
PHYParams.NumTxAntennas = 1; % Number of transmitter antennas
PHYParams.NumSTS = 1; % Number of space-time streams
PHYParams.NumRxAntennas = 1; % Number of receiver antennas
PHYParams.ChannelBandwidth = 'CBW80'; % Bandwidth of system
PHYParams.TransmitterFrequency = 5e9; % Transmitter frequency in Hz

MACParams = struct;
MACParams.NumChannels = 3; % Number of non-overlapping channels
MACParams.CCALevel = -70; % Transmission threshold in clear channel assessment algorithm (dBm)

The scenario parameters define the size and layout of the residential building as per [6 on page 7-
0]. Note only one receiver (STA) can be active at any given time.

ScenarioParams = struct;
ScenarioParams.BuildingLayout = [10 2 5]; % Number of rooms in [x,y,z] directions
ScenarioParams.RoomSize = [10 10 3]; % Size of each room in metres [x,y,z]
ScenarioParams.NumRxPerRoom = 1; % Number of receivers per room.

The NumDrops and NumTxEventsPerDrop parameters control the length of the simulation. In this
example, these parameters are configured for a short simulation. A 'drop' randomly places
transmitters and receivers within the scenario and selects the channel for a BSS. A 'transmission'
event randomly selects transmitters and receivers for transmissions according to the basic clear
channel assessment (CCA) rules defined in the evaluation methodology.

SimParams = struct;
SimParams.Test = 3; % Downlink transmission per basic channel access rule
SimParams.NumDrops = 3;
SimParams.NumTxEventsPerDrop = 2;

The function box2Simulation runs the simulation by performing these steps:

1 Randomly drop transmitters (APs) and receivers (STAs) within the scenario.
2 Calculate the large-scale path loss and generate frequency-selective TGax fading channels for all

non-negligible links.
3 For each transmission event, determine active transmitters and receivers based on CCA rules.
4 Calculate and return the SINR per subcarrier and the effective SINR for each active receiver as

per box 2, test 3 in the TGax evaluation methodology.

box2Results = box2Simulation(PHYParams,MACParams,ScenarioParams,SimParams);

7 System-Level Simulation

7-88

Plot the CDF of the SINR per subcarrier and effective SINR (as defined in box 2, test 3) against
submitted calibration results.

tgaxCalibrationCDF(box2Results.sinr(:), ...
 ['SS1Box2Test' num2str(SimParams.Test) 'A'],'CDF of SINR per subcarrier');
tgaxCalibrationCDF(box2Results.sinrEff(:), ...
 ['SS1Box2Test' num2str(SimParams.Test) 'B'],'CDF of effective SINR per reception');

end

 Running drop #1/3 ...
 Generating 3518 fading channel realizations ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...
 Running drop #2/3 ...
 Generating 3366 fading channel realizations ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...
 Running drop #3/3 ...
 Generating 3750 fading channel realizations ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...

 Physical Layer Abstraction for System-Level Simulation

7-89

Increase the number of drops for a more accurate comparison.

Part B - Link Performance Model

The link performance model predicts the instantaneous PER given the SINR per subcarrier calculated
in Part A on page 7-0 and coding parameters used for the transmission.

Effective SINR mapping and averaging is used to compress the post-equalizer SINR per subcarrier
into a single effective SNR. The effective SNR is the SNR that provides an equivalent PER
performance with an additive white Gaussian noise (AWGN) channel as with the fading channel. A
pre-computed lookup table, generated with WLAN Toolbox™, provides the PER for an SNR under an
AWGN channel for a given channel coding, modulation scheme, and coding rate. Once the PER is
obtained, a random variable determines whether the packet has been received in error.

7 System-Level Simulation

7-90

The TGax evaluation methodology PER estimation procedure is used in this example considering a
single interference event.

The effective SINR is calculated using the received bit mutual information rate (RBIR) mapping
function;

SINRef f = αϕ−1 1
NssNsc

∑ j = 1
Nss ∑m = 1

Nsc ϕ
SINR m, j

β , M , M .

• ϕ x, M is the RBIR mapping function, which transforms the SINR of each subcarrier to an
“information measure" for the modulation scheme M. The RBIR mapping function for BPSK,
QPSK, 16QAM, 64QAM and 256QAM is provided in [7 on page 7-0].

• ϕ−1 x, M is the inverse RBIR mapping function, which transforms an “information measure” back
to the SNR domain.

• Nss is the number of spatial-streams.
• Nsc is the number of subcarriers.
• SINR is the post-equalizer SINR of the mth subcarrier and jth spatial-stream.
• α and β are tuning parameters. The TGax evaluation methodology assumes no tuning therefore in

this example we assume these are set to 1.

The PER for a reference data length PERPL0 is obtained by looking up the appropriate AWGN table,
LUT, given the modulation and coding scheme (MCS), channel coding scheme, and reference data

length (PL0)

PERPL0 = LUT SNRef f ; MCS, coding scheme, PL0 ,

where the reference data length depends on the channel coding and data length for the transmission
PL.

PL0 =
32 bytes, BCC and PL < 400 bytes

1458 bytes, BCC and PL ≥ 400 bytes
1458 bytes, LDPC

.

The final estimated PER is then adjusted for the data length:

 Physical Layer Abstraction for System-Level Simulation

7-91

PERPL = 1 − PERPL0

PL
PL0 .

The described method assumes the SINR is constant for the duration of the packet. The TGax
evaluation methodology describes techniques to deal with time-varying interference and estimate the
error rate of media access control protocol data units (MPDUs) within an aggregate MPDU (A-
MPDU).

Calculate Effective SINR

Calculate the effective SINR and the PER using the tgaxLinkPerformanceModel example helper
object.

Abstraction = tgaxLinkPerformanceModel;

The effectiveSINR method calculates the effective SINR given the modulation scheme and post
equalizer SINR per subcarrier and spatial stream.

format = ;

mcs = ; % MCS 6 is 64-QAM
[snreff,rbir_sc,rbir_av] = effectiveSINR(Abstraction,sinr,format,mcs);

The RBIR (information measure) per subcarrier obtained by mapping the SINR per subcarrier, and
the average RBIR are shown in the first figure subplot. The effective SINR per subcarrier is obtained
by inverse mapping the average RBIR and is shown in the second subplot.

plotRBIR(sinr,snreff,rbir_av,rbir_sc,k);

7 System-Level Simulation

7-92

Estimate Packet Error Rate

Given the effective SNR, estimate the PER by linearly interpolating and extrapolating a pre-computed
AWGN link-level curve in the logarithmic domain, and adjusting for the data length. The
estimatePER method returns the final PER, per, and the AWGN lookup table used, lut .

channelCoding = ;

dataLength = ; % Bytes
[per,~,~,lut] = estimatePER(Abstraction,snreff,format,mcs,channelCoding,dataLength);

% Plot the AWGN lookup table and the estimated PER
figure;
semilogy(lut(:,1),lut(:,2));
grid on
hold on
plot(snreff,per,'d');
legend('AWGN LDPC lookup table','Estimated PER from effective SINR')
title('Packet error rate')
xlabel('SNR (dB)')
ylabel('PER')

 Physical Layer Abstraction for System-Level Simulation

7-93

TGax Evaluation Methodology Box 0 - Verify Effective SNR vs PER Performance

To verify the entire physical-layer abstraction method, the PER from a link-level simulation is
compared with the PER estimates using the abstraction. This follows steps 2 and 3 of box 0 testing in
the TGax Evaluation Methodology. An 802.11ax single-user link is modeled with perfect
synchronization, channel estimation, and no impairments apart from a fading TGax channel model
and AWGN. Only errors within data portion of a packet are considered.

In this example the SNRs to simulate are selected based on the MCS, number of transmit and receive
antennas, and channel model for the given PHY configuration. The number of space-time streams is
assumed to equal the number of transmit antennas. The simulation is configured for a short run; for
more meaningful results you should increase the number of packets to simulate.

verifyAbstraction = ; % Disable box 0 simulation
if verifyAbstraction

% Simulation Parameters
mcs = [4 8]; % Vector of MCS to simulate between 0 and 11
numTxRx = [1 1]; % Matrix of MIMO schemes, each row is [numTx numRx]
chan = "Model-D"; % String array of delay profiles to simulate
maxNumErrors = 1e1; % The maximum number of packet errors at an SNR point
maxNumPackets = 1e2; % The maximum number of packets at an SNR point

% Fixed PHY configuration for all simulations
cfgHE = wlanHESUConfig;
cfgHE.ChannelBandwidth = 'CBW20'; % Channel bandwidth

7 System-Level Simulation

7-94

cfgHE.APEPLength = 1000; % Payload length in bytes
cfgHE.ChannelCoding = 'LDPC'; % Channel coding

% Generate a structure array of simulation configurations. Each element is
% one SNR point to simulate.
simParams = getBox0SimParams(chan,numTxRx,mcs,cfgHE,maxNumErrors,maxNumPackets);

% Simulate each configuration
results = cell(1,numel(simParams));
% parfor isim = 1:numel(simParams) % Use 'parfor' to speed up the simulation
for isim = 1:numel(simParams)
 results{isim} = box0Simulation(simParams(isim));
end

The suitability of the abstraction is determined by comparing the PER calculated by link-level
simulation and abstraction. The first figure compares the PERs at each SNR simulated.

plotPERvsSNR(simParams,results);

The second figure compares the number of successfully decoded link-level simulation packets with an
effective SNR against the reference AWGN curve. If the abstraction is successful the PER should
follow the AWGN curve.

plotPERvsEffectiveSNR(simParams,results);
end

Model-D 1-by-1, MCS 4, SNR 11 completed after 14 packets, PER:0.78571
Model-D 1-by-1, MCS 4, SNR 15 completed after 22 packets, PER:0.5
Model-D 1-by-1, MCS 4, SNR 19 completed after 100 packets, PER:0.05
Model-D 1-by-1, MCS 4, SNR 23 completed after 100 packets, PER:0.02
Model-D 1-by-1, MCS 4, SNR 27 completed after 100 packets, PER:0
Model-D 1-by-1, MCS 8, SNR 21.5 completed after 13 packets, PER:0.84615
Model-D 1-by-1, MCS 8, SNR 25.5 completed after 23 packets, PER:0.47826
Model-D 1-by-1, MCS 8, SNR 29.5 completed after 100 packets, PER:0.03
Model-D 1-by-1, MCS 8, SNR 33.5 completed after 100 packets, PER:0.02
Model-D 1-by-1, MCS 8, SNR 37.5 completed after 100 packets, PER:0

 Physical Layer Abstraction for System-Level Simulation

7-95

7 System-Level Simulation

7-96

rng(sprev) % Restore random state

In this example the tuning parameters α and β are set to 1. These could be tuned to further improve
the accuracy of the abstraction if desired. The results when simulating 1000 packet errors or 100000
packets for MCS 0 to 9 for a 1458-byte packet without tuning is shown.

 Physical Layer Abstraction for System-Level Simulation

7-97

7 System-Level Simulation

7-98

Further Exploration

To see how the 802.11ax physical layer abstraction described in this example can be used in a
system-level simulation, see the “802.11ax System-Level Simulation with Physical Layer Abstraction”
on page 7-52 example.

Selected Bibliography

1 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

2 IEEE 802.11-14/0571r12 - 11ax Evaluation Methodology.
3 Brueninghaus, Karsten, et al. "Link performance models for system level simulations of

broadband radio access systems." 2005 IEEE 16th International Symposium on Personal, Indoor
and Mobile Radio Communications. Vol. 4. IEEE, 2005.

4 Mehlführer, Christian, et al. "The Vienna LTE simulators-Enabling reproducibility in wireless
communications research." EURASIP Journal on Advances in Signal Processing 2011.1 (2011):
29.

5 IEEE 802.11-14/0800r30 - Box 1 and Box 2 Calibration Results.
6 IEEE 802.11-14/0980r16 - TGax Simulation Scenarios.
7 IEEE 802.11-14/1450r0 - Box 0 Calibration Results

 Physical Layer Abstraction for System-Level Simulation

7-99

802.11ax Downlink Throughput Comparison of OFDM and
OFDMA Through System-level Simulation

This example demonstrates how to model a multinode downlink orthogonal frequency-division
multiple access (OFDMA) IEEE® 802.11ax™ [1] scenario using SimEvents®, Stateflow®, and
WLAN Toolbox™. In OFDMA, independent groups of subcarriers are allocated to distinct users to
realize simultaneous transmission. This multiplexing technique provides significant advantages in
terms of spectrum efficiency, contention, latency, and network jitter. This example provides a model to
enable downlink (DL) OFDMA communication in a 802.11ax network. The network topology consists
of an access point (AP) and four linearly placed stations. The model enables you to configure multiple
applications with same access category (AC) for different destination stations. In this example, the
allocation of resource units (RUs) to the stations is fixed based on the number of users. The AP
schedules transmissions to the stations in a round-robin fashion. The derived plot shows that the DL
throughput at the AP is higher with OFDMA as compared to OFDM.

802.11ax OFDMA

The IEEE 802.11ax introduced significant enhancements over the existing 802.11ac standard [2].
One of the key improvements is the OFDMA, which is an extension of orthogonal frequency division
multiplexing (OFDM) digital modulation technology into a multiuser environment. The principle of
OFDMA is to efficiently use the available frequency space. OFDMA partitions the channel bandwidth
into multiple mutually exclusive subbands, called RUs. By partitioning the channel bandwidth,
multiple users can access the air interface simultaneously. As a result, concurrent transmissions of
small frames to multiple users is possible at the same time. For example, a conventional 20 MHz
channel can be partitioned into a maximum of nine subchannels. Subsequently, using OFDMA, an
802.11ax AP can simultaneously transmit small frames to nine 802.11ax stations. The simultaneous
transmission of frames not only cuts down on excessive overhead at the MAC but also minimizes the
contention overhead. In OFDMA, the allocation of RUs is completely controlled by the AP. The
802.11ax standard specifies two types of OFDMA transmissions, namely downlink (DL) and uplink
(UL) OFDMA.

• DL OFDMA: AP transmits data to multiple stations simultaneously using a different RU for each
station.

• UL OFDMA: Multiple stations transmit data to AP at the same time with each station using a
different RU.

Comparison of OFDM and OFDMA

This section illustrates the difference between OFDM and OFDMA. In this figure, the 802.11n/ac/ax
AP transmits DL to 4 OFDM stations independently over time. The entire channel bandwidth is used
for the DL communication between the AP and a single OFDMA station. The same holds true for any
uplink transmission from a single 802.11n/ac/ax client to the 802.11n/ac/ax AP.

7 System-Level Simulation

7-100

This figure shows that when OFDMA is used, the 802.11ax AP partitions the channel bandwidth into
RUs for multiple OFDMA stations on a continuous basis for simultaneous DL transmissions. By
partitioning the channel bandwidth, OFDMA makes efficient use of the available frequency spectrum,
resulting in reduced MAC contention and PHY preamble overhead.

 802.11ax Downlink Throughput Comparison of OFDM and OFDMA Through System-level Simulation

7-101

An 802.11ax AP can also coordinate with 802.11ax OFDMA stations for simultaneous uplink
transmissions.

Model 802.11ax Network with OFDMA

This example demonstrates DL OFDMA communication in an 802.11ax network with one AP and four
stations. These stations are linearly placed with AP located at the start. These stations implement
carrier-sense multiple access with collision avoidance (CSMA/CA) with physical carrier sense. The
physical carrier sensing uses the clear channel assessment (CCA) mechanism to determine whether
the medium is busy before transmitting. This example is an enhancement over the “802.11 MAC and
Application Throughput Measurement” on page 7-27 example. The enhancements are related to
adding 802.11ax DL OFDMA support in the MAC and PHY library blocks. However, the Node
Position Allocator (NPA), Visualizer and the Application Traffic Generator blocks
are the same as in the “802.11 MAC and Application Throughput Measurement” on page 7-27
example.

7 System-Level Simulation

7-102

The components of a WLAN node are shown in this figure. The information is retrieved by pressing
the arrow button for each node in the above figure.

Application Configuration

This example uses the same application layer blocks (traffic generator and traffic receiver) as used in
the “802.11 MAC and Application Throughput Measurement” on page 7-27 example. You can add or
remove any number of application blocks with different configuration options like Packet Size,
Packet Interval, Destination Name, and Access Category (AC). Multiple applications with
same AC can be enabled simultaneously with different Destination Names. To add or remove
applications, enter the Applications subsystem block of a node by double clicking on it. This figure
shows the applications inside the Applications subsystem block.

 802.11ax Downlink Throughput Comparison of OFDM and OFDMA Through System-level Simulation

7-103

This figure shows the configuration options for an application. Double click on the Application
Traffic Generator block to retrieve these options.

MAC Configuration

7 System-Level Simulation

7-104

• The AP can be configured to transmit DL OFDMA multiuser format frames by setting PHY Tx
Format to HE-MU-OFDMA in MAC configuration parameters. You can also limit the number of
users in DL OFDMA transmission using the Max Downlink Stations property.

• Enable parallel transmissions between the basic service sets (BSSs) through the Enable
Spatial Reuse with BSS Color property. This property is applicable only when PHY Tx
Format property is set to HE-SU, HE-EXT-SU, or HE-MU-OFDMA. This model does not support the
spatial reuse (SR) functionality. To study the impact of SR with BSS coloring on the network
throughput, refer “Spatial Reuse with BSS Coloring in 802.11ax Residential Scenario” on page 7-
12 example.

Model Limitations with HE-MU-OFDMA Format:

 802.11ax Downlink Throughput Comparison of OFDM and OFDMA Through System-level Simulation

7-105

• This example supports only DL OFDMA communication. Any node can act as an AP or a station.
Nodes with one or more applications enabled are considered APs. This model assumes that all the
remaining stations are associated with APs.

• Uplink acknowledgments are not supported.
• Channel reservation using RTS & CTS is not supported.
• OFDMA in combination with MIMO is not supported.
• OFDMA in combination with rate adaptation is not supported.

When the PHY Tx Format is HE-MU-OFDMA, the Ack Policy, RTS Threshold, and Number of
Transmit Chains options are disabled.

Simulation Results

To measure the network throughput, simulations are carried out for these two scenarios:

1 AP as transmitter: Simulating the model for the AP serving 1, 2, 4, 6, 8, and 9 stations using the
OFDM and OFDMA transmissions.

2 AP and stations as transmitters: The same scenario as above but with stations also
communicating with an AP using OFDM transmissions.

The throughput results obtained through these simulations are plotted as a function of the number of
DL stations for both the OFDM (HE-SU) and the OFDMA (HE-MU-OFDMA) configurations.

Simulation Configuration

Create an 802.11ax network with nine stations and one AP. At the AP, add nine Application
Traffic Generator blocks generating data to the nine stations. To enable the stations as
transmitters, configure AppState of an Application Traffic Generator block to On. Configure
the AP/station(s) with the values shown in this table.

Parameter Value
Packet size 1000 bytes
Packet Interval 0.00001 seconds
Access Category Best Effort
Max A-MPDU Subframes 1
MCS 11
Ack Policy No Ack

Simulate the network for HE-SU and HE-MU-OFDMA formats by varying the number of applications
enabled as 1, 2, 4, 6, 8, and 9 for each simulation. At the end of each simulation run, the throughput
values for each node are retrieved from the statistics.mat file and summed to obtain the total
throughput.

Plot throughput results for OFDM and OFDMA configurations.

AP as transmitter

This code plots OFDM and OFDMA configurations using only AP as transmitters:

figure;

7 System-Level Simulation

7-106

% Number of DL stations
numStations = [1 2 4 6 8 9];

% Throughput results for OFDMA configuration (Mbps)
throughputOFDMA = [32.64 46.08 59.52 55.68 72.96 82.08];

% Throughput results for OFDM configuration (Mbps)
throughputOFDM = [33.76 33.76 33.76 33.76 33.76 33.76];

% Plot throughput obtained from OFDM simulations
plot(numStations, throughputOFDM,'-o');
% Retain OFDM throughput plot
hold on;
% Plot throughput obtained from OFDMA simulations
plot(numStations, throughputOFDMA,'-x');
grid on;
xlabel('Number of DL Stations');
ylabel('Throughput (Mbps)');
legend('OFDM', 'OFDMA', 'Location', 'northeastoutside');
title('Downlink Throughput at AP');

AP and stations as transmitters

This code plots OFDM and OFDMA configurations using both APs and stations as transmitters:

figure;

% Number of DL stations

 802.11ax Downlink Throughput Comparison of OFDM and OFDMA Through System-level Simulation

7-107

numStations = [1 2 4 6 8 9];

% Throughput results for OFDMA configuration (Mbps)
throughputOFDMA = [20.8 27.52 32.64 29.76 40.96 38.88];
% Throughput results for OFDM configuration (Mbps)
throughputOFDM = [21.44 16.64 10.72 8.16 8 7.2];

% Plot throughput obtained from OFDM simulations
plot(numStations, throughputOFDM,'-o');
% Retain OFDM throughput plot
hold on;
% Plot throughput obtained from OFDMA simulations
plot(numStations, throughputOFDMA,'-x');
grid on;
xlabel('Number of DL Stations');
ylabel('Throughput (Mbps)');
legend('OFDM', 'OFDMA', 'Location', 'northeastoutside');
title('Downlink Throughput at AP');

The above plots show the 802.11ax throughput comparison of OFDM and OFDMA. As OFDMA
reduces the MAC contention and the PHY preamble overhead, the throughput obtained with OFDMA
is greater than that obtained using OFDM. When only AP is configured as the transmitter, the DL
throughput shows no change for OFDM. However, when both the AP and the stations are configured
as the transmitters, the DL throughput shows a steady decline. This is because the AP gets fewer
opportunities to transmit as the number of transmitting stations increase in the network.

7 System-Level Simulation

7-108

This example enables you to model a DL OFDMA communication in a multinode IEEE 802.11ax
network. The DL OFDMA support is added to the PHY and MAC library blocks. The application layer
configuration allows you to enable multiple applications with same AC using different destination
stations. Round-robin scheduling strategy is used to select stations for next transmission. The
assignment of RUs is fixed based on the number of users. The plots confirm that the throughput at AP
with OFDMA is greater than that obtained using OFDM.

Further Exploration

Scheduling Stations for Transmission

This example uses round-robin scheduling algorithm to select stations for next transmission.

RU allocation

In a transmission, the allocation index defines the assignment of RUs. The allocation index is defined
in Table 27-24 of [1]. For each 20 MHz subchannel, an 8-bit index describes the number of RUs, the
size of RUs, and the number of users transmitted on each RU. In this example, the allocation of RUs
to the DL stations is fixed based on the number of users as shown in this table. In both the above
plots, the throughput drop for OFDMA from four stations to six stations can be affiliated to the RU
size. Transmission time is shorter in a 52-tone RU as compared to 26-tone RU. When an MU frame is
transmitted, all the PSDUs in the MU frame are padded to align at the same transmission time. The
presence of 26-tone RU for six users results in a longer transmission time, thereby causing the
throughput drop between four and six users.

Number of stations Allocation index Sizes of RU (tones)
1 192 242

2 96 106 106

3 128 106 26 106

4 112 52 52 52 52

5 15 52 52 26 52 52

6 7 26 26 52 26 52 52

7 3 26 26 26 26 26 52 52

8 1 26 26 26 26 26 26 26 52

9 0 26 26 26 26 26 26 26 26 26

The model used in this example implements four stations (allocation index 112). You can modify the
station scheduling algorithm and RU allocation by updating the helper function roundRobinScheduler
used by the EDCA MAC block.

Appendix

The example uses these helpers:

1 edcaFrameFormats.m: Create an enumeration for PHY frame formats.
2 edcaNodeInfo.m: Return MAC address of a node.

 802.11ax Downlink Throughput Comparison of OFDM and OFDMA Through System-level Simulation

7-109

3 edcaPlotQueueLengths.m: Plot MAC queue lengths in the simulation.
4 edcaPlotStats.m: Plot MAC state transitions with respect to simulation times.
5 edcaStats.m: Create an enumeration for simulation statistics.
6 edcaUpdateStats.m: Update statistics of the simulation.
7 helperAggregateMPDUs.m: Aggregate MPDUs to form an A-MPDU.
8 helperSubframeBoundaries.m : Return subframe boundaries of an A-MPDU.
9 phyRx.m: Model PHY operations related to packet reception.
10 phyTx.m Model PHY operations related to packet transmission.
11 edcaApplyFading.m: Apply Rayleigh fading effect on the waveform.
12 heSIGBUserFieldDecode.m: Decode HE-SIG-B user field.
13 heCPECorrection.m: Estimate and correct common phase error.
14 heSIGBCommonFieldDecode.m: Decode HE-SIG-B common field.
15 heSIGBMergeSubchannels.m: Merge 20MHz HE-SIG-B subchannels.
16 addMUPadding.m: Add multiuser PSDU padding.
17 macQueueManagement.m: Create a WLAN MAC queue management object.
18 roundRobinScheduler.m: Create a round-robin scheduler object.
19 calculateSubframesCount.m: Return number of subframes to be aggregated.
20 interpretVHTSIGABitsFailCheck.m: Interprets the bits in VHT-SIG-A field
21 rateAdaptationARF.m: Create an auto rate fallback (ARF) algorithm object.
22 rateAdaptationMinstrelNonHT.m: Create a minstrel algorithm object.

References

1 IEEE P802.11ax™/D4.1. "Amendment 6: Enhancements for High Efficiency WLAN" Draft
Standard for Information technology - Telecommunications and information exchange between
systems Local and metropolitan area networks - Specific requirements -Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

2 IEEE Std 802.11ac™ -2016. "Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications." IEEE Standard for Information technology-Telecommunications and
information exchange between systems, Local and metropolitan area networks-Specific
requirements.

3 Jiang, Tao, et al., editors. Orthogonal Frequency Division Multiple Access Fundamentals and
Applications. Auerbach, 2010.

7 System-Level Simulation

7-110

Generate and Visualize FTP Application Traffic Pattern
This example shows how to generate a file transfer protocol (FTP) application traffic pattern based on
the IEEE® 802.11ax™ Evaluation Methodology [1 on page 7-0] and the 3GPP TR 36.814
specification [2 on page 7-0].

FTP Application Traffic Model

Multinode communication systems involve modeling of different application traffic models. Each
application is characterized by parameters such as the data rate, packet inter arrival time, and packet
size. To evaluate various algorithms and protocols, standardization bodies such as IEEE and 3GPP
define certain application traffic patterns such as Voice over Internet Protocol (VoIP), video
conferencing, and FTP. This example generates and visualizes an FTP application traffic pattern.

The FTP application traffic pattern is modeled as a sequence of file transfers separated by reading
time. The reading time specifies the time interval between two successive file transfers. The file is
generated as multiple packets separated by packet inter arrival time. The packet inter arrival time
specifies the time interval between two successive packet transfers.

The 11ax Evaluation Methodology [1 on page 7-0] specifies this FTP application traffic model:

• Local FTP traffic model - This model is characterized by truncated Lognormal file size and
exponential reading time.

The 3GPP TR 36.814 specification [2 on page 7-0] specifies these FTP application traffic models:

• FTP traffic model 2 - This model is characterized by 2/0.5 megabytes file size and exponential
reading time. This figure shows the traffic pattern of this FTP model.

• FTP traffic model 3 - This model is characterized by a 0.5 megabytes file, exponential reading
time, and Poisson packet arrival rate. This figure shows the traffic pattern of this FTP model.

 Generate and Visualize FTP Application Traffic Pattern

7-111

This example demonstrates the local FTP traffic model specified in 11-ax Evaluation Methodology [1
on page 7-0]. Similarly, you can use the FTP traffic models 2 and 3 specified in 3GPP TR 36.814
specification [2 on page 7-0] using the file size and packet arrival rate properties.

Configure FTP Application Traffic Pattern Object

Create a configuration object to generate the FTP application traffic pattern.

% Create FTP application traffic pattern object with default properties
ftpObj = networkTrafficFTP;

% Set exponential distribution mean value for reading time in milliseconds
ftpObj.ExponentialMean = 50;

% Set truncated Lognormal distribution mu value for file size calculation
ftpObj.LogNormalMu = 10;

% Set truncated Lognormal distribution sigma value for file size calculation
ftpObj.LogNormalSigma = 1;

% Set truncated Lognormal distribution upper limit in megabytes
ftpObj.UpperLimit = 5;

% Display object
disp(ftpObj);

 networkTrafficFTP with properties:

 LogNormalMu: 10
 LogNormalSigma: 1
 UpperLimit: 5
 ExponentialMean: 50

7 System-Level Simulation

7-112

 PacketInterArrivalTime: 0
 GeneratePacket: 0

Generate and Visualize FTP Application Traffic Pattern

Generate FTP application traffic pattern using the generate object function of the
networkTrafficFTP object.

% Set simulation time in milliseconds
simTime = 10000;

% Set step time in milliseconds
stepTime = 1;

% Validate simTime, simTime must be greater than or equal to stepTime
validateattributes(simTime, {'numeric'}, {'real', 'scalar', 'finite', '>=', stepTime});
rng('default');

% Time after which the generate method must be invoked again
nextInvokeTime = 0;

% Generated packet count
packetCount = 0;

% Initialize arrays to store outputs for visualization
% Packet generation times in milliseconds
generationTime = zeros(5000, 1);

% Time interval between two consecutive packet transfers in milliseconds
packetIntervals = zeros(5000, 1);

% Packet sizes in bytes
packetSizes = zeros(5000, 1);

% Loop over the simulation time, generating FTP application traffic pattern
% and saving the dt and packet size values for visualization
while simTime
 if nextInvokeTime <= 0 % Time to generate the packet
 packetCount = packetCount+1; % Increment packet count
 % Call generate method and store outputs for visualization
 [packetIntervals(packetCount), packetSizes(packetCount)] = generate(ftpObj);
 % Set next invoke time
 nextInvokeTime = packetIntervals(packetCount);
 % Store packet generation time for visualization
 generationTime(packetCount+1) = generationTime(packetCount) + packetIntervals(packetCount);
 end

 % Update next invoke time
 nextInvokeTime = nextInvokeTime - stepTime;

 % Update simulation time
 simTime = simTime - stepTime;
end

Visualize the generated FTP application traffic pattern. In this plot, dt is the time interval between
two successive FTP application packets.

 Generate and Visualize FTP Application Traffic Pattern

7-113

% Packet Number Versus Packet Intervals (dt)
% Stem graph to see packet intervals
pktIntervalsFig = figure('Name', 'Packet intervals', 'NumberTitle', 'off');
pktIntervalsAxes = axes(pktIntervalsFig);
stem(pktIntervalsAxes, packetIntervals(1:packetCount));
title(pktIntervalsAxes, 'Packet Number Versus dt');
xlabel(pktIntervalsAxes, 'Packet Number');
ylabel(pktIntervalsAxes, 'dt in Milliseconds');

% Plot to see different packet sizes
pktSizesFig = figure('Name', 'Packet sizes', 'NumberTitle', 'off');
pktSizesAxes = axes(pktSizesFig);
plot(pktSizesAxes, packetSizes(1:packetCount), 'marker', 'o');
title(pktSizesAxes, 'Packet Number Versus Packet Size');
xlabel(pktSizesAxes, 'Packet Number');
ylabel(pktSizesAxes, 'Packet Size in Bytes');

7 System-Level Simulation

7-114

% Stem graph of FTP application traffic pattern (Packet sizes of different files
% at different packet generation times)
ftpPatternFig = figure('Name', 'FTP application traffic pattern', 'NumberTitle', 'off');
ftpPatternAxes = axes(ftpPatternFig);
stem(ftpPatternAxes, generationTime(1:packetCount), packetSizes(1:packetCount), 'Marker', 'o');
title(ftpPatternAxes, 'Packet Generation Time Versus Packet Size');
ylabel(ftpPatternAxes, 'Packet Size in Bytes');
xlabel(ftpPatternAxes, 'Time in Milliseconds');

 Generate and Visualize FTP Application Traffic Pattern

7-115

Further Exploration

This example generates an FTP traffic pattern as per the 11ax Evaluation Methodology [1 on page 7-
0] and 3GPP specification [2 on page 7-0]. Similarly, you can use networkTrafficVoIP and
networkTrafficOnOff objects to generate VoIP and On-Off application traffic patterns,
respectively. You can use these different application traffic patterns in system-level simulations to
accurately model the real-world data traffic.

References

1 IEEE 802.11-14/0571r12 . "11ax Evaluation Methodology". IEEE P802.11. Wireless LANs.
2 3GPP TR 36.814. "Evolved Universal Terrestrial Radio Access (E-UTRA). Further advancements

for E-UTRA physical layer aspects". 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network.

7 System-Level Simulation

7-116

Test and Measurement

8

Modeling and Testing an 802.11ax RF Receiver with 5G
Interference

The example shows how to characterize the impact of RF impairments, such as phase noise and
power amplifier (PA) nonlinearities, in the RF reception of an IEEE® 802.11ax™ waveform coexisting
with an adjacent 5G or 802.11ax interferer. The example generates the baseband waveforms by using
WLAN Toolbox™ and 5G Toolbox™ and models the RF receiver by using RF Blockset™. The example
does not require 5G Toolbox if it models an 802.11ax interferer.

Introduction

This example characterizes the impact of receiver RF impairments, such as phase noise and power
amplifier (PA) nonlinearities, and the impact of an adjacent 5G [1] or 802.11ax [2] interferer in the
RF reception of an 802.11ax waveform. To evaluate the impact of the interference, the example
performs these measurements:

• Error vector magnitude (EVM): vector difference between the ideal (transmitted) signal and the
measured (received) signal

• Adjacent channel rejection (ACR): power difference between the desired signal and an interfering
signal in the adjacent channel

• Packet error rate (PER): number of packets containing errors divided by the total number of
received packets

The example works on a packet-by-packet basis. For each desired HE packet, the workflow consists of
these steps:

1 Generate the baseband 802.11ax waveform (desired) by using WLAN Toolbox.
2 Generate the baseband 5G waveform (interferer) by using 5G Toolbox. You can generate an

802.11ax interferer by using WLAN Toolbox instead. Alternatively, you can remove the
interference.

3 Oversample and filter the waveforms by using a Finite Impulse Response (FIR) Interpolation
block.

4 Measure and display the ACR by calculating the power difference between both waveforms.
5 Aggregate both waveforms by using the Frequency Shift and Aggregation block.
6 Convert the baseband waveform into an RF signal by using the RF Receiver block. The block uses

an RF carrier frequency to carry the baseband information in RF Blockset. You can select the RF
carrier frequency of your choice.

7 Downconvert the waveform to an intermediate frequency by using an RF superheterodyne
receiver. You can accurately model the impairments introduced by an actual RF receiver by using
the RF components available in RF Blockset. You can also explore the impact of altering the RF
impairments or replace the RF superheterodyne receiver with another RF subsystem of your
choice.

8 Downsample and filter the waveform by using an FIR Decimation block.
9 Extract the data symbols and measure the EVM by demodulating the baseband waveform.
10 Calculate the PER by extracting the received bits and comparing them to the transmitted bits.

This example performs these operations by using a Simulink® model. The Simulink model carries out
the baseband signal processing (steps 1, 2, 9 and 10) by using MATLAB® Function blocks and

8 Test and Measurement

8-2

performs the RF receiver modeling (steps 6 and 7) by using RF Blockset. This model supports Normal
and Accelerator simulation modes.

Simulink Model Structure

The model contains three main parts:

• Baseband Waveform Generation: generates the baseband 802.11ax and 5G waveforms
• RF Reception: downconverts the waveform to an intermediate frequency by modeling the effect of

RF components
• Baseband Waveform Reception: calculates EVM and PER

modelName = 'HERFReceiverNRInterfererModel';
open_system(modelName);

Baseband Waveform Generation

The HE Waveform block generates standard-compliant high-efficiency single-user (HE SU) waveforms
[2]. For the waveform generation, set transmission and configuration parameters by specifying
options in the HE Waveform block.

The HE Waveform block contains two tabs:

• HE SU Format: configure the transmission parameters selected in this section by using a
wlanHESUConfig object.

• Generator Configuration: generate each packet, which contains random data, with the
wlanWaveformGenerator function for the specified HE SU configuration and parameters.

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-3

Similarly, the NR Interferer block transmits standard-compliant 5G NR waveforms for frequency
range 1 (FR1) [1]. For the NR waveform generation, you can specify the channel bandwidth,
modulation, subcarrier spacing (SCS), and cell identity in the NR Interferer block. The NR Interferer
block transmits a full band and uniform PDSCH. The model resamples the NR waveform so that the
sampling rate of the NR waveform matches the sampling rate of the 802.11ax waveform.

8 Test and Measurement

8-4

Alternatively, you can model an 802.11ax interferer instead of a 5G interferer by selecting
Choice_HE in the Variant Source block. The model shifts the HE interferer so that it is not
synchronized with the desired HE waveform.

Control the power of both waveforms by setting the HE Gain and Interferer Gain blocks. To cancel the
transmission of the interferer, set the Gain parameter of the Interferer Gain block to 0.

After generating the waveforms, a Vector Concatenate block concatenates both waveforms
horizontally, one column per waveform. Then, an FIR Interpolation block oversamples and filters the
waveforms to show the effect of the nonlinear impairments on the adjacent channels. To capture at
least third order and fifth order nonlinearities, oversample the combined bandwidth (both waveforms)
around 5 times. As the combined bandwidth is 40MHz by default (20 MHz each waveform and a 20
MHz spacing between them), set an Oversampling factor of 10 to provide a sample rate of 200
MHz, which is 5 times the combined bandwidth. You can set the Oversampling factor in the
Multirate Parameters block, which provides an interface to easily configure the parameters of the FIR
Interpolation and Decimation blocks.

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-5

Once the waveforms have been oversampled, the Frequency Shift and Aggregation block frequency
shifts and aggregates them. To measure the ACR, the center frequency of the adjacent channel shall
be placed 20, 40, 80, or 160 MHz away from the center frequency of the desired signal [2]. By
default, the example centers the HE waveform at baseband (0 Hz) and sets the spacing between the
HE and interfering waveforms to 20 MHz. You can adjust the center frequencies by specifying the
Desired output center frequencies (Hz) parameter in the Frequency Shift and Aggregation block.
The ACR measurement is displayed in the ACR (dB) block.

Specify Simulation Time

The Packet transmission time () parameter in the HE Waveform block calculates the time
required to transmit each HE packet. Hence, the Stop Time value in the Simulink model must be
equal to or higher than the value specified in Packet transmission time () to obtain the EVM
results and constellation diagram of at least one packet. As the filters in the FIR Interpolation and
Decimation blocks introduce a delay, you can use the Idle time (s) parameter in the HE Packet block
to compensate for the delay.

RF Reception

The RF Receiver block is based on a superheterodyne receiver architecture. This architecture applies
passband filtering and amplification and downconverts the received waveform to an intermediate
frequency. The RF components of this superheterodyne receiver are:

• RF and IF bandpass filters
• Low-noise and IF amplifiers

8 Test and Measurement

8-6

• Demodulator consisting of mixers, phase shifter, and local oscillator

set_param(modelName,'Open','off');
set_param([modelName '/RF Receiver'],'Open','on');

The Inport block inside the RF Receiver converts the complex baseband waveform into the RF
domain. You can vary the center frequency of this RF signal by modifying the Carrier frequency
parameter of this block. By default, the Carrier frequency parameter corresponds to the center
frequency of the desired HE waveform and the carrier frequency of the NR waveform is located 20
MHz from the HE carrier. The Outport block converts the RF signal back to complex baseband.

You can configure the RF Receiver components by using the RF Receiver block mask.

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-7

The RF Receiver block exhibits typical impairments, including:

• Phase noise as an effect directly related to the thermal noise within the active devices of the
oscillator

• Amplifier nonlinearities due to DC power limitation when the amplifiers work in the saturation
region

Use an Input Buffer block before the RF Receiver block to send fewer samples at a time to the RF
Receiver block. For simplicity, the Input Buffer in the current configuration sends one sample at a
time, resulting in the RF Receiver block being sample-based.

As the current RF Receiver block configuration sends one sample at a time, the Output Buffer block
(after the RF Receiver block) collects all samples within the baseband HE waveform before sending
the samples to the HE Demodulation and EVM Calculation block. At the output of the RF Receiver
block, the FIR Decimation block downsamples the waveform back to its original sampling rate.
Additionally, the ADC block digitizes the signal. You can modify the ADC block parameters using its
mask.

8 Test and Measurement

8-8

Baseband Waveform Reception

The HE Demodulation and EVM Calculation block recovers and plots the HE-Data symbols in the
Constellation Diagram block by performing frequency and packet offset corrections, channel
estimation, pilot phase tracking, OFDM demodulation, and equalization. This block performs these
EVM measurements:

• EVM per subcarrier (dB): EVM averaged over the allocated HE-Data symbols within a subcarrier
• EVM per OFDM symbol (dB)
• Overall EVM (dB and %): EVM averaged over all transmitted HE-Data symbols

This block also decodes each packet to recover the transmitted bits. The example compares the
recovered bits to those transmitted for each packet to determine the packet error rate for the
simulation duration by using the PER Calculation block.

The ACR measurement is displayed in the ACR (dB) block. You can also measure the ACR by
calculating the power difference between the Channel Power levels of each waveform in the
Spectrum Analyzer Input block. To check the Channel Power levels of each waveform, set this
configuration in the Spectrum Analyzer Input block:

• The Span (Hz): must be the bandwidth of the waveform to measure. By default, the example sets
this value to 20 MHz, which is the bandwidth of both waveforms, the desired HE and the
interferer.

• The CF (Hz): must be 0 for the desired HE waveform or the spacing between both waveforms
(defined in the Frequency Shift and Aggregation block) for the interferer. By default, the example
sets this value to 0 Hz to measure the channel power of the desired waveform.

To measure ACR according to IEEE P802.11ax/D7.0, set the desired waveform power 3 dB above the
rate-dependent sensitivity specified in Table 27-51 (-71 dBm for the default configuration) and adjust
the power level of the interferer waveform to achieve a 10% PER for a PSDU length of 4096 octets.

Model Performance

To characterize the impact of the NR interference on the HE reception you can compare the EVM for
two different cases: 1) without interference, for example, transmit only the HE waveform; and 2) with

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-9

interference, for example, transmit both HE and NR waveforms. You can also measure the ACR in the
second case.

• Without NR interference (NR gain = 0). To eliminate the NR interference, set the Gain parameter
of the Interferer Gain block to 0. To calculate the EVM and plot the constellation diagram, run the
simulation long enough to capture one packet (Stop Time equal to 85.5 microseconds for the
default configuration).

set_param([modelName '/Interferer Gain'],'Gain','0');
sim(modelName);

8 Test and Measurement

8-10

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-11

8 Test and Measurement

8-12

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-13

When you disable the interference, the overall EVM is around -20 dB.

• With NR interference (NR gain = -37.72 dB). To activate the NR interference, set the Gain
parameter of the Interferer Gain block to any value greater than 0. For example, in order to
measure the ACR when the PER is approximately 10% for a PSDU length of 4096 octets [2],
choose a gain value of around -37.72 dB and increase the APEP length. If you want to measure the
PER for several packet transmissions, for example 100 packets, multiply the current Stop Time
value by 100. By default, the example transmits one packet and sets the APEP length to 50 bytes.

set_param([modelName '/Interferer Gain'],'Gain','db2mag(-37.72)');
sim(modelName);

8 Test and Measurement

8-14

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-15

8 Test and Measurement

8-16

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-17

8 Test and Measurement

8-18

Compared to the case without interference, the constellation diagram is more distorted and the
overall EVM is around -17 dB.

The ACR is around 28 dB. You can also measure the ACR when the interferer is an HE waveform. In
this case, to measure the ACR when the PER is approximately 10% for a PSDU length of 4096 octets
[2], set the Gain value of the Interferer block to around -72.4 dB.

Summary and Further Exploration

This example demonstrates how to model and test the reception of an HE waveform coexisting with
an NR waveform or another HE waveform. The RF receiver consists of bandpass filters, amplifiers,
and a demodulator. To evaluate the impact of the NR interference, the example modifies the gain of
the NR waveform and performs EVM, PER, and ACR measurements. You can explore the impact of
altering the RF impairments. For example:

• Increase the phase noise by using Phase noise offset (Hz) and Phase noise level (dBc/Hz)
parameters on the Demodulator tab of the RF Receiver block.

• Decrease the LO to RF isolation by using the LO to RF isolation (dB): parameter on the
Demodulator tab of the RF Receiver block.

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-19

This example configures the RF Receiver block to work with the default values of the HE Waveform
and NR Interferer blocks and with the HE and NR carriers centered at 5950 MHz and 5970 MHz,
respectively. These carriers are within the IEEE 802.11 HE frequency bands (between 1 GHz and
7.125 GHz [2]) and the NR operating band n96 [3]. If you change the carrier frequencies or the
waveform configurations, you may need to update the parameters of the RF Receiver block as these
parameters have been selected to work for the default configuration of the example. For instance, a
change in the HE carrier frequency requires revising the bandwidth of the filters. Modifying the
waveform bandwidth may require updating the Impulse response duration and Phase noise
frequency offset (Hz) parameters of the Demodulator block. The phase noise offset determines the
lower limit of the impulse response duration. If the phase noise frequency offset resolution is too high
for a given impulse response duration, a warning message appears, specifying the minimum duration
suitable for the required resolution. For more information, see Demodulator (RF Blockset).

This example could be the basis for testing the coexistence between HE and NR or HE waveforms for
different RF configurations. You can replace the RF Receiver block with another RF subsystem of
your choice and configure the model accordingly.

Bibliography

1 3GPP TS 38.141-1. "NR; Base Station (BS) conformance testing Part 1: Conducted conformance
testing." 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network.

2 IEEE P802.11ax™/D7.0 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

3 3GPP TS 38.101-1. "NR; User Equipment (UE) radio transmission and reception." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network.

8 Test and Measurement

8-20

Modeling and Testing an 802.11ax RF Transmitter
This example shows how to characterize the impact of radio frequency (RF) impairments in an
802.11ax transmitter. The example generates a baseband IEEE® 802.11ax™ waveform by using
WLAN Toolbox™ and models the RF transmitter by using RF Blockset™.

Introduction

This example characterizes the impact of RF impairments such as in-phase and quadrature (IQ)
imbalance, phase noise, and power amplifier (PA) nonlinearities in the transmission of an 802.11ax
waveform [1]. To evaluate the impact of these impairments, the example performs these
measurements:

• Error vector magnitude (EVM): vector difference at a given time between the ideal (transmitted)
signal and the measured (received) signal

• Spectral mask: test that ensures a transmission in one channel does not cause substantial
interference in adjacent channels

• Occupied bandwidth: bandwidth that contains 99% of the total integrated power of the signal,
centered on the assigned channel frequency

• Channel power: filtered mean power centered on the assigned channel frequency
• Complementary cumulative distribution function (CCDF): probability that the signal's

instantaneous power is at a specified level above its average power
• Peak-to-average power ratio (PAPR): relation between the peak power of the signal and its average

power

The example works on a packet-by-packet basis. For each packet, the workflow consists of these
steps:

1 Generate the baseband 802.11ax waveform by using WLAN Toolbox.
2 Oversample and filter the waveform by using a Finite Impulse Response (FIR) Interpolation

block.
3 Import the baseband waveform as an RF signal into the RF Transmitter block implemented by

using RF Blockset. The model uses an RF intermediate frequency to carry the baseband
information in RF Blockset.

4 Upconvert the waveform to the carrier frequency by using an RF transmitter. You can accurately
model the impairments introduced by an actual RF transmitter by using the RF components
available in RF Blockset.

5 Calculate the spectral mask, occupied bandwidth, channel power, CCDF and PAPR by using the
Spectrum Analyzer block.

6 Downsample and filter the waveform by using an FIR Decimation block.
7 Extract the data symbols and measure the EVM by demodulating the baseband waveform.

This example performs these operations by using a Simulink® model. The Simulink model carries out
the baseband signal processing (steps 1, 2, 6 and 7) by using MATLAB® Function blocks and
performs the RF transmitter modeling (steps 3 and 4) by using RF Blockset. This model supports
Normal and Accelerator simulation modes.

Simulink Model Structure

The model contains three main parts:

 Modeling and Testing an 802.11ax RF Transmitter

8-21

• Baseband Waveform Generation: generates the baseband 802.11ax waveforms
• RF Transmission: upconverts the waveform to the carrier frequency
• Baseband Waveform Reception: performs the RF measurements and calculates EVM by

demodulating the baseband waveform

modelName = 'HERFTransmitterModel';
open_system(modelName);

Baseband Waveform Generation

The HE Packet block generates standard-compliant high-efficiency single-user (HE SU) waveforms
[1]. For the waveform generation, set transmission and configuration parameters by specifying
options in the HE Packet block.

The HE Packet block contains two tabs:

• HE SU Format: configure the transmission parameters selected in this section by using a
wlanHESUConfig object.

• Generator Configuration: generate each packet, which contains random data, with the
wlanWaveformGenerator function for the specified HE SU configuration and parameters.

8 Test and Measurement

8-22

After generating each packet, the FIR Interpolation block oversamples and filters the waveform to
allow you to see the effect of the high-power amplifier (HPA) on the out-of-band spectral emissions. At
the output of the RF Transmitter block, the FIR Decimation block downsamples the waveform back to
its original sampling rate. The Multirate Parameters block provides an interface to easily configure
the parameters of the FIR Interpolation and Decimation blocks.

 Modeling and Testing an 802.11ax RF Transmitter

8-23

Specifying Simulation Time

The Packet transmission time () parameter in the HE Packet block calculates the time required
to transmit each 802.11ax packet. Hence, the Stop Time value in the Simulink model must be equal
to or higher than the value depicted in Packet transmission time () to obtain the EVM results
and constellation diagram of at least one packet. As the filters in the FIR Interpolation and
Decimation blocks introduce a delay, you can use the Idle time (s) parameter in the HE Packet block
to compensate for the delay.

RF Transmission

The RF Transmitter block is based on a superheterodyne transmitter architecture. This architecture
upconverts the waveform to the carrier frequency and applies passband filtering and amplification.
The RF components of this superheterodyne transmitter are:

• IQ modulator consisting of mixers, a phase shifter, and a local oscillator
• Bandpass filter
• Power amplifier

In addition to these components, this RF Transmitter block also includes a variable gain amplifier
(VGA) to control the input back-off (IBO) level of the HPA.

set_param(modelName,'Open','off');
set_param([modelName '/RF Transmitter'],'Open','on');

8 Test and Measurement

8-24

The Inport block inside the RF Transmitter converts the complex baseband waveform into the RF
domain. You can vary the center frequency of this RF signal by modifying the Carrier frequency
parameter of this block (the default frequency, which is considered to be an intermediate frequency in
this example, is 70 MHz). The Outport block converts the RF signal back into complex baseband.

You can configure the RF Transmitter components by using the RF Transmitter block mask.

 Modeling and Testing an 802.11ax RF Transmitter

8-25

The RF Transmitter block exhibits typical impairments, including:

• I/Q imbalance as a result of gain or phase mismatches between the parallel sections of the
transmitter chain dealing with the IQ signal paths

• Phase noise as an effect directly related to the thermal noise within the active devices of the
oscillator

• PA nonlinearities due to DC power limitation when the amplifier works in the saturation region

You can use an Input Buffer block before the RF Transmitter block to reduce the number of samples
sent to the RF Transmitter block. For simplicity, the Input Buffer in the current configuration sends
one sample at a time, resulting in the RF Transmitter block being sample-based.

Adapt the power level of the baseband waveform to the RF configuration by adding a Gain Control
block after the Input Buffer block.

As the current RF Transmitter block configuration sends one sample at a time, the Output Buffer
block (after the RF Transmitter block) collects all samples within the baseband HE waveform before
sending the samples onto the Demodulation and EVM calculation block.

8 Test and Measurement

8-26

Baseband Waveform Reception

The Demodulation and EVM calculation block recovers and plots the HE Data symbols in the
Constellation Diagram block by performing frequency and packet offset corrections, channel
estimation, pilot phase tracking, OFDM demodulation, and equalization. This block also performs
these EVM measurements:

• EVM per subcarrier (dB): EVM averaged over the allocated HE Data symbols within a subcarrier
• EVM per OFDM symbol (dB)
• Overall EVM (dB and %): EVM averaged over all transmitted HE Data symbols

The default configuration of the Spectrum Analyzer block depicts the spectral mask according to
IEEE P802.11ax/D7.0 Section 27.3.19.1 [1]. The Spectrum Analyzer block also provides additional
measurements such as occupied bandwidth, channel power, CCDF and PAPR. The Power Meter block
measures the RF waveform channel power, which is displayed in the Output Power (dBm) block.

Effect of Power Amplifier Nonlinearities

To characterize the impact of HPA nonlinearities in the EVM evaluation, you can measure the
amplitude-to-amplitude modulation (AM/AM) of the HPA. The AM/AM refers to the output power
levels in terms of the input power levels. The helper function hePlotHPACurve displays the AM/AM
characteristic of the HPA selected for this model.

hePlotHPACurve();
figHPA = gcf;

 Modeling and Testing an 802.11ax RF Transmitter

8-27

P1dB is the power at 1 dB compression point and is normally used as a reference when selecting the
IBO level of the HPA. You can see the HPA impact on the RF Transmitter block by analyzing the EVM
results for different operating points of the HPA. For example, compare the case when IBO = 11 dB,
corresponding to HPA operating in the linear region, with the case when IBO = 3 dB, corresponding
to HPA operating in saturation. The gain of the VGA controls the IBO level. To keep a VGA linear
behavior using the default parameters, select gain values lower than 15 dB.

• Linear HPA (IBO = 11 dB). To operate at an IBO level of 11 dB, set the Available power gain
parameter of the VGA block to 5 dB. To calculate the EVM and plot the constellation diagram, run
the simulation long enough to capture one packet (Stop Time equal to 304.4 us for the default
configuration).

set_param([modelName '/RF Transmitter'],'vgaGain','5');
sim(modelName);

8 Test and Measurement

8-28

 Modeling and Testing an 802.11ax RF Transmitter

8-29

8 Test and Measurement

8-30

According to IEEE P802.11ax/D7.0 Table 27-49 [1], the allowed relative constellation error (EVM) in
an HE SU PPDU when the Dual carrier modulation parameter is disabled and the Modulation/
coding is equal to 3 (16-QAM, 1/2) is -16 dB. As the overall EVM, around -41 dB, is lower than -16
dB, this architecture falls within the requirements of IEEE P802.11ax/D7.0 [1].

• Nonlinear HPA (IBO = 3 dB). To operate at an IBO level of 3 dB, set the Available power gain
parameter of the VGA block to 13 dB.

set_param([modelName '/RF Transmitter'],'vgaGain','13');
sim(modelName);
slmsgviewer.DeleteInstance();

% Restore to default parameters
set_param([modelName '/RF Transmitter'],'vgaGain','5');

 Modeling and Testing an 802.11ax RF Transmitter

8-31

8 Test and Measurement

8-32

 Modeling and Testing an 802.11ax RF Transmitter

8-33

8 Test and Measurement

8-34

Compared to the previous case, the constellation diagram is more distorted. In terms of
measurements, the overall EVM, around -28 dB, is still lower than -16 dB, so it also falls within the
requirements of IEEE P802.11ax/D7.0 [1].

Summary and Further Exploration

This example demonstrates how to model and test the transmission of an 802.11ax waveform. The RF
Transmitter block consists of a bandpass filter, amplifiers and an IQ modulator. The example
highlights the effect of HPA nonlinearities on the performance of the RF Transmitter block. You can
explore the impact of altering other impairments as well. For example:

• Increase I/Q imbalance by using the I/Q gain mismatch (dB) and I/Q phase mismatch (Deg)
parameters on the IQ Modulator tab of the RF Transmitter block.

• Increase the phase noise by using Phase noise offset (Hz) and Phase noise level (dBc/Hz)
parameters on the IQ Modulator tab of the RF Transmitter block.

Additionally, you can check the occupied bandwidth and the CCDF and PAPR measurements by using
the Spectrum Analyzer window: select the Channel Measurements button on the toolbar for the
occupied bandwidth and the CCDF Measurements button for the CCDF and PAPR.

The RF Transmitter block is configured to work with the default values of the HE Packet block and
with the RF carrier centered at 5950 MHz. This carrier is within the IEEE 802.11 HE STA frequency
bands (between 1 GHz and 7.125 GHz [1]). If you change the carrier frequency or the values in the

 Modeling and Testing an 802.11ax RF Transmitter

8-35

HE Packet block, you may need to update the parameters of the RF Transmitter block components, as
these parameters have been selected to work for the default configuration of the example. For
instance, a change in the carrier frequency requires revising the bandwidth of the filters. Modifying
the waveform bandwidth may require updating the Impulse response duration and Phase noise
frequency offset (Hz) parameters of the IQ Modulator block. The phase noise offset determines the
lower limit of the impulse response duration. If the phase noise frequency offset resolution is too high
for a given impulse response duration, a warning message appears, specifying the minimum duration
suitable for the required resolution. For more information, see IQ Modulator (RF Blockset).

This example could be the basis for testing HE waveforms for different RF configurations. You can
replace the RF Transmitter block by another RF subsystem of your choice and configuring the model
accordingly.

References

1 IEEE P802.11ax™/D7.0 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

8 Test and Measurement

8-36

802.11ac Receiver Minimum Input Sensitivity Test
This example shows how to measure the receiver minimum input sensitivity as specified in Section
22.3.19.1 of the IEEE® 802.11ac™ standard [1].

Introduction

The receiver minimum sensitivity test ensures a device under test (DUT) receives data with a defined
maximum packet error rate (PER) of 10% at a defined minimum signal power. The minimum signal
power depends on the channel bandwidth and modulation and coding scheme (MCS) as specified in
Table 22-25 of the IEEE 802.11ac standard [1]:

When the test is performed with hardware, each input antenna port on the DUT is connected through
a cable to a single output antenna port of a transmitter. To perform the test, specify these parameters
for the test waveform:

• Number of spatial streams - equal to the number of transmit antennas
• PSDU length, in bytes - 4096
• Space-time block coding (STBC) - disabled
• Guard interval, in nanoseconds - 800
• Channel coding - binary convolutional coding (BCC)

This example shows how to simulate the test by using WLAN Toolbox™. VHT packets stimulate a
receiver at a range of input levels below the minimum sensitivity level. The example then measures
the packet error rate for each sensitivity level.

The example simulates the test by performing these steps over a range of sensitivity levels:

• Generate and scale packets to the desired signal level
• Add white Gaussian noise is to create a noise floor at the receiver
• Demodulate the noisy packets to recover PSDUs.
• Compare recovered PSDUs to those transmitted to determine the number of packet errors and

hence the packet error rate.

Automatic gain control (AGC), packet detection, timing synchronization, carrier frequency offset
correction, noise estimation and phase tracking are performed by the example receiver. This diagram
demonstrates processing for each packet:

 802.11ac Receiver Minimum Input Sensitivity Test

8-37

Test Parameters

Configure a transmission for the test by using a VHT configuration object. This example measures the
minimum sensitivity for a 160 MHz transmission with 64-QAM rate 5/6 modulation and coding. The
simulated DUT has 2 receive antennas. Test different configurations by changing these parameters.

cfgVHT = wlanVHTConfig; % Create VHT transmission configuration
cfgVHT.ChannelBandwidth = 'CBW160'; % Bandwidth
cfgVHT.MCS = 7; % 64-QAM, rate 5/6
NumReceiveAntennas = 2; % Number of receive antennas

The test requires these fixed transmission parameters.

cfgVHT.APEPLength = 4096; % Bytes
cfgVHT.STBC = false;
cfgVHT.NumTransmitAntennas = NumReceiveAntennas;
cfgVHT.NumSpaceTimeStreams = NumReceiveAntennas;
cfgVHT.SpatialMapping = 'Direct';
cfgVHT.GuardInterval = 'Long';

Simulation Parameters

A receiver processes VHT packets at a range of input levels below the minimum input sensitivity
level. Specify the range of offsets to test in the vector testInputLevelOffsets.

testInputLevelOffsets = [-10 -9 -8 -7]; % dB

Control the number of packets tested at each sensitivity by specifying these parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each input level. When the
number of packet errors reaches this limit, the simulation at this sensitivity level is complete.

2 maxNumPackets is the maximum number of packets simulated at each input level and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example lead to a very short simulation. Increase maxNumErrors and
maxNumPackets for meaningful results.

maxNumErrors = 20;
maxNumPackets = 200;

8 Test and Measurement

8-38

Signal Power Setup

The minimum sensitivity test specifies a maximum PER for a measured input level per receive
antenna. In this simulation the receiver processes a test signal with a specified input level in dBm.
Generate the test signal using the wlanWaveformGenerator function. The
wlanWaveformGenerator function normalizes the waveform such that the power for all antennas
sums to 0 dBm. Therefore, scale the output of the waveform generator to create the desired input
level.

% Receiver minimum input level sensitivity for 20 MHz, Table 22-25. The
% sensitivity increases by 3dB for double the bandwidth.
rxMinSensitivityTable = [-82 -79 -77 -74 -70 -66 -65 -64 -59 -57]; % dBm

% Get minimum input sensitivity given MCS and bandwidth
fs = wlanSampleRate(cfgVHT); % Baseband sampling rate (Hz)
B = floor(10*log10((fs/20e6))); % Scalar for bandwidth
rxMinSensitivity = rxMinSensitivityTable(cfgVHT.MCS+1)+B; % dBm
disp(['Minimum sensitivity for MCS' num2str(cfgVHT.MCS) ', ' ...
 num2str(fs/1e6) ' MHz: ' num2str(rxMinSensitivity,'%2.1f') ' dBm'])

Minimum sensitivity for MCS7, 160 MHz: -55.0 dBm

Define the range of input levels below the minimum level to test using testInputLevels.

testInputLevels = rxMinSensitivity+testInputLevelOffsets; % dBm

Calculate a voltage scalar, A, to scale the generated waveform for each test level. The power per
receive antenna port is measured during the simulation to confirm the input signal level is correct.

A = 10.^((testInputLevels-30)/20); % Voltage gain (attenuation)
A = A*sqrt(cfgVHT.NumTransmitAntennas); % Account for generator scaling

Noise Configuration

Add thermal noise at the receiver. The height of the noise floor determines the SNR at the receiver, as
the input signal level is fixed for this test. The noise figure of the receiver determines the level of
noise floor.

NF = 6; % Noise figure (dB)
T = 290; % Ambient temperature (K)
BW = fs; % Bandwidth (Hz)
k = 1.3806e-23; % Boltzmann constant (J/K)
noiseFloor = 10*log10(k*T*BW)+NF; % dB
disp(['Receiver noise floor: ' num2str(noiseFloor+30,'%2.1f') ' dBm'])

Receiver noise floor: -85.9 dBm

Add noise to the waveform using an AWGN channel, comm.AWGNChannel.

awgnChannel = comm.AWGNChannel('NoiseMethod','Variance', ...
 'Variance',10^(noiseFloor/10));

Input Level Sensitivity Simulation

Calculate the packet error rate for each input level by simulating multiple packets.

For each packet perform the following processing steps:

 802.11ac Receiver Minimum Input Sensitivity Test

8-39

1 Create and encode a PSDU to create a single packet waveform.
2 Create the desired input level in dBm by scaling the waveform.
3 Measure the power of the received waveform.
4 Add AWGN to the received waveform.
5 Boost the signal prior to processing by passing through an automatic gain control.
6 Detect the packet.
7 Estimate and correct coarse carrier frequency offset.
8 Establish fine timing synchronization.
9 Estimate and correct fine carrier frequency offset.
10 Extract and OFDM demodulate the VHT-LTF and perform channel estimation.
11 Extract the VHT Data field and recover the PSDU.

ind = wlanFieldIndices(cfgVHT); % For accessing fields within the packet
chanBW = cfgVHT.ChannelBandwidth;
rng(0); % Set random state for repeatability

agc = comm.AGC; % Automatic gain control

S = numel(testInputLevels);
packetErrorRate = zeros(S,1);
rxAntennaPower = zeros(S,1);
for i=1:S
 disp(['Simulating ' num2str(testInputLevels(i),'%2.1f') ...
 ' dBm input level...']);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 measuredPower = zeros(maxNumPackets,1); % Average power per antenna
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet waveform
 txPSDU = randi([0 1],cfgVHT.PSDULength*8,1); % PSDULength in bytes
 tx = wlanWaveformGenerator(txPSDU,cfgVHT);

 % Scale input signal to desired level
 rx = tx.*A(i);

 % Measure the average power at the antenna connector in Watts
 measuredPower(numPkt) = mean(mean(rx.*conj(rx)));

 % Add noise floor at receiver
 rx = awgnChannel(rx);

 % Pass each channel through AGC
 for ic = 1:size(rx,2)
 rx(:,ic) = agc(rx(:,ic));
 reset(agc);
 end

 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rx,chanBW);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;

8 Test and Measurement

8-40

 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-STF and perform coarse frequency offset correction
 lstf = rx(coarsePktOffset+(ind.LSTF(1):ind.LSTF(2)),:);
 coarseFreqOff = wlanCoarseCFOEstimate(lstf,chanBW);
 rx = helperFrequencyOffset(rx,fs,-coarseFreqOff);

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rx(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,chanBW);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;
 % if packet detected out of a reasonable range (>50 samples);
 % packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-LTF and perform fine frequency offset correction
 lltf = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
 fineFreqOff = wlanFineCFOEstimate(lltf,chanBW);
 rx = helperFrequencyOffset(rx,fs,-fineFreqOff);

 % Extract VHT-LTF samples from the waveform, demodulate and perform
 % channel estimation
 vhtltf = rx(pktOffset+(ind.VHTLTF(1):ind.VHTLTF(2)),:);
 vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,cfgVHT);
 chanEst = wlanVHTLTFChannelEstimate(vhtltfDemod,cfgVHT);

 % Get single stream channel estimate
 chanEstSSPilots = vhtSingleStreamChannelEstimate(vhtltfDemod,cfgVHT);

 % Extract VHT Data samples from the waveform
 vhtdata = rx(pktOffset+(ind.VHTData(1):ind.VHTData(2)),:);

 % Estimate the noise power in VHT data field
 nEstVHT = vhtNoiseEstimate(vhtdata,chanEstSSPilots,cfgVHT);

 % Recover the transmitted PSDU in VHT Data
 rxPSDU = wlanVHTDataRecover(vhtdata,chanEst,nEstVHT,cfgVHT);

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(txPSDU,rxPSDU));
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at input level point
 packetErrorRate(i) = numPacketErrors/(numPkt-1);
 disp([' Completed after ' ...
 num2str(numPkt-1) ' packets, PER: ' ...
 num2str(packetErrorRate(i))]);

 802.11ac Receiver Minimum Input Sensitivity Test

8-41

 % Calculate average input power per antenna
 rxAntennaPower(i) = 10*log10(mean(measuredPower(1:(numPkt-1))))+30;
 disp([' Measured antenna connector power: ' ...
 num2str(rxAntennaPower(i),'%2.1f') ' dBm']);
end

Simulating -65.0 dBm input level...
 Completed after 21 packets, PER: 1
 Measured antenna connector power: -65.0 dBm
Simulating -64.0 dBm input level...
 Completed after 26 packets, PER: 0.80769
 Measured antenna connector power: -64.0 dBm
Simulating -63.0 dBm input level...
 Completed after 130 packets, PER: 0.16154
 Measured antenna connector power: -63.0 dBm
Simulating -62.0 dBm input level...
 Completed after 200 packets, PER: 0.02
 Measured antenna connector power: -62.0 dBm

Analysis and Further Exploration

Plot the PER for tested input signal levels with the maximum PER at minimum sensitivity.

figure
semilogy(rxAntennaPower,packetErrorRate,'o-')
hold on
semilogy(rxMinSensitivity,0.1,'rx')
currentxlim = xlim(gca);
xlim([currentxlim(1) currentxlim(2)+1])
grid on
xlabel('Measured power per antenna connector (dBm)');
ylabel('PER');
legend('Simulated PER performance','Maximum PER at minimum sensitivity');
title(sprintf(['Minimum Input Sensitivity Test: MCS%d, %d MHz, ' ...
 '%d Antennas'],cfgVHT.MCS,fs/1e6,cfgVHT.NumTransmitAntennas))

8 Test and Measurement

8-42

The plot reveals the simulated 10% PER is just under 8 dB lower than the minimum sensitivity
specified by the test. This difference is due to the implementation margin allowed by the test. The
implementation margin allows for algorithmic degradations due to impairments and the receiver
noise figure when compared to ideal AWGN performance [2]. In this example only AWGN is added as
an impairment. Therefore, only the algorithmic performance of front-end synchronization, channel
estimation and phase tracking in the presence of AWGN use the implementation margin. If more
impairments are included in the simulation the PER waterfall in the plot will move right towards the
minimum sensitivity and the margin will decrease.

The number of packets tested at each SNR point is controlled by two parameters; maxNumErrors
and maxNumPackets. For meaningful results, you should use larger numbers than those used in this
example.

Appendix

This example uses the following helper functions:

• helperFrequencyOffset.m
• vhtNoiseEstimate.m
• vhtSingleStreamChannelEstimate.m

Selected Bibliography

1 IEEE Std 802.11ac™-2013 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific

 802.11ac Receiver Minimum Input Sensitivity Test

8-43

requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

2 Perahia, Eldad, and Robert Stacey. Next Generation Wireless LANS: 802.11n and 802.11ac.
Cambridge University Press, 2013.

8 Test and Measurement

8-44

802.11ac Transmitter Measurements
This example shows how to perform these transmitter measurements on an IEEE® 802.11ac™
waveform:

• Modulation accuracy
• Spectrum emission mask
• Spectrum flatness
• In-phase and quadrature (IQ) gain and phase imbalance

Introduction

The transmitter modulation accuracy, required spectrum mask, and required spectral flatness for a
given configuration is specified in [Section 21.3.17 of 1]. This example shows how to perform these
measurements on a waveform. This example also models, measures, and corrects the IQ gain and
phase imbalance. Generate the waveform with WLAN Toolbox™ or use a captured waveform with a
spectrum analyzer.

The example generates 20 VHT packets with an 80 MHz channel bandwidth and a 10 microsecond
gap between packets. Each packet contains random data and uses 256-QAM modulation. To reduce
the out-of-band emmissions and meet the spectral mask requirement, upsample and filter the
baseband waveform. Add the IQ gain and phase imbalance to the filtered waveform. Use a high-
power amplifier (HPA) model to introduce inband distortion and spectral regrowth. Perform the
spectral emission mask measurement on the upsampled waveform after the high-power amplifier
modeling. Downsample and correct the waveform with the estimated IQ gain and phase imbalance.
Measure the error vector magnitude (EVM) of the VHT Data field to determine the modulation
accuracy. Additionally, measure the spectral flatness. This diagram shows the workflow contained in
the example.

IEEE 802.11ac VHT Packet Configuration

This example generates an IEEE 802.11ac waveform consisting of multiple VHT format packets. Use
the VHT format configuration object, wlanVHTConfig, to configure transmission properties of a VHT
packet. This example configures the VHT waveform for a 80 MHz bandwidth. Because this example
does not use space-time block coding, it can measure the modulation accuracy per spatial stream.

cfgVHT = wlanVHTConfig; % Create packet configuration
cfgVHT.ChannelBandwidth = 'CBW80'; % 80 MHz

 802.11ac Transmitter Measurements

8-45

cfgVHT.NumTransmitAntennas = 1; % One transmit antenna
cfgVHT.NumSpaceTimeStreams = 1; % One space-time stream
cfgVHT.STBC = false; % No STBC so one spatial stream
cfgVHT.MCS = 8; % Modulation: 256-QAM
cfgVHT.APEPLength = 3000; % A-MPDU length pre-EOF padding in bytes

Baseband Waveform Generation

Generate the VHT waveform for the specified bits and configuration by using the
wlanWaveformGenerator function, specifying the desired oversampling factor, number of packets,
and idle time between each packet.

numPackets = 20; % Generate 20 packets
idleTime = 10e-6; % 10 microseconds idle time between packets

Create random bits for all packets, data, and pass as an argument to wlanWaveformGenerator
along with the VHT packet configuration object cfgVHT. This configures the waveform generator to
synthesize an 802.11ac VHT waveform. Additionally, configure the waveform generator by using
name-value pairs to generate multiple packets with a specified idle time between each packet.

% Create random data; PSDULength is in bytes
savedState = rng(0); % Set random state
data = randi([0 1],cfgVHT.PSDULength*8*numPackets,1);

% Generate a multi-packet waveform
txWaveform = wlanWaveformGenerator(data,cfgVHT, ...
 'NumPackets',numPackets,'IdleTime',idleTime);

% Get the sampling rate of the waveform
fs = wlanSampleRate(cfgVHT);
disp(['Baseband sampling rate: ' num2str(fs/1e6) ' Msps']);

Baseband sampling rate: 80 Msps

Oversampling and Filtering

Use spectral filtering to reduce the out-of-band spectral emissions owing to the implicit rectangular
pulse shaping in the OFDM modulation, and spectral regrowth caused by the high-power amplifier
model. Upsample the waveform to model the effect of a high-power amplifier and to view the out-of-
band spectral emissions. Oversampling requires an interpolation filter to remove spectral images
caused by upsampling. This example oversamples the waveform with an interpolation filter, which
acts as a spectral filter and allows the waveform to meet spectral mask requirements. Oversample
and filter the waveform by using the dsp.FIRInterpolator System object (TM).

% Oversample the waveform
osf = 3; % Oversampling factor
filterLen = 120; % Filter length
beta = 0.5; % Design parameter for Kaiser window

% Generate filter coefficients
coeffs = osf.*firnyquist(filterLen,osf,kaiser(filterLen+1,beta));
coeffs = coeffs(1:end-1); % Remove trailing zero
interpolationFilter = dsp.FIRInterpolator(osf,'Numerator',coeffs);
txWaveform = interpolationFilter(txWaveform);

% Plot the magnitude and phase response of the filter applied after
% oversampling

8 Test and Measurement

8-46

h = fvtool(interpolationFilter);
h.Analysis = 'freq'; % Plot magnitude and phase responses
h.FS = osf*fs; % Set sampling rate
h.NormalizedFrequency = 'off'; % Plot responses against frequency

IQ Imbalance Modeling

IQ imbalance arises when a front-end component does not respect the power balance or the
orthogonality between the I and Q branches. This example adds IQ gain and phase imbalance to the
transmitted waveform based on the flag modelIQImbalance. At the receiver, estimate the IQ gain
and phase imbalance and correct the waveform as per the compensation scheme specified in [5].

modelIQImbalance = true; % Set to true to add IQ gain and phase imbalance

if modelIQImbalance
 iqGaindB = 1; % IQ gain imbalance in dB, specify from the range [-1 1]
 iqPhaseDeg = 1; % IQ phase imbalance in degrees, specify from the range [-2 2]
 iqGainLin = db2mag(iqGaindB); % Convert gain from dB to linear value
 txWaveform = real(txWaveform) + 1i*imag(txWaveform)*iqGainLin*exp(1j*iqPhaseDeg*pi/180); % As specified in Equation-1 of [5]
end

High-Power Amplifier Modeling

The high-power amplifier introduces nonlinear behavior in the form of inband distortion and spectral
regrowth. This example simulates the power amplifiers by using the Rapp model in 802.11ac [2],
which introduces AM/AM distortion.

 802.11ac Transmitter Measurements

8-47

Model the amplifier by using the comm.MemorylessNonlinearity object, and configure reduced
distortion by specifying a backoff, hpaBackoff, such that the amplifier operates below its saturation
point. You can increase the backoff to reduce EVM for higher MCS values.

pSaturation = 25; % Saturation power of a power amplifier in dBm
hpaBackoff = 13; % Power amplifier backoff in dB

% Create and configure a memoryless nonlinearity to model the amplifier
nonLinearity = comm.MemorylessNonlinearity;
nonLinearity.Method = 'Rapp model';
nonLinearity.Smoothness = 3; % p parameter
nonLinearity.LinearGain = -hpaBackoff;
nonLinearity.OutputSaturationLevel = db2mag(pSaturation-30);

% Apply the model to each transmit antenna
for i=1:cfgVHT.NumTransmitAntennas
 txWaveform(:,i) = nonLinearity(txWaveform(:,i));
end

Add thermal noise to the waveform, specifying a 6 dB receiver noise figure [3].

NF = 6; % Noise figure (dB)
BW = fs*osf; % Bandwidth (Hz)
k = 1.3806e-23; % Boltzman constant (J/K)
T = 290; % Ambient temperature (K)
noisePower = 10*log10(k*T*BW)+NF;

awgnChannel = comm.AWGNChannel('NoiseMethod','Variance', ...
 'Variance',10^(noisePower/10));
txWaveform = awgnChannel(txWaveform);

Modulation Accuracy (EVM), Spectral Flatness and IQ Imbalance Measurements

Resample the oversampled waveform down to baseband for physical layer processing and EVM,
spectral flatness, and IQ imbalance measurements. As part of the resampling, apply a low-pass anti-
aliasing filter before downsampling. The impact of the low-pass filter is visible in the spectral flatness
measurement. Resample the waveform to baseband using the dsp.FIRDecimator System object
(TM) with the same coefficients, coeffs, used for oversampling in the 'Oversampling and Filtering'
section.

% Resample the waveform to baseband
decimationFilter = dsp.FIRDecimator(osf,'Numerator',coeffs);
rxWaveform = decimationFilter(txWaveform);

This section detects, synchronizes, and extracts each packet in rxWaveform, then measures the
EVM, spectral flatness, and IQ imbalance. For each packet, the example performs these steps:

• Detect the start of the packet
• Extract the non-HT fields
• Estimate and correct coarse carrier frequency offset (CFO)
• Perform fine symbol timing estimate by using the frequency-corrected non-HT fields
• Extract the packet from the waveform by using the fine symbol timing offset
• Correct the extracted packet with the coarse CFO estimate
• Extract the L-LTF, then estimate the fine CFO and correct for the whole packet

8 Test and Measurement

8-48

• Extract the VHT-LTF and perform channel estimation for each of the transmit streams
• Measure the IQ imbalance from the channel estimate and perform correction on the channel

estimate
• Measure the spectral flatness by using the channel estimate
• Extract and OFDM demodulate the VHT data field
• Perform noise estimation by using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers
• Phase-correct and equalize the VHT data field by using the channel and noise estimates
• Correct the equalized data subcarriers with the IQ imbalance estimate
• For each data-carrying subcarrier in each spatial stream, find the closest constellation point and

measure the EVM

The diagram shows the processing chain:

The VHT-LTF symbols include pilot symbols to allow for phase tracking, but this example does not
perform phase tracking.

Test the spectral flatness for each packet by measuring the deviation in the magnitude of individual
subcarriers in the channel estimate against the average [1]. Plot these deviations for each packet
using the helper function vhtTxSpectralFlatnessMeasurement. Plot the average EVM per data-
carrying subcarrier and the equalized symbols for each packet.

Demodulate, equalize, and decode the VHT Data symbols by using the wlanVHTDataRecover
function. Parameterize this function to perform pilot phase tracking and zero-forcing equalization as
required by the standard. This example measures the modulation accuracy from the equalized
symbols.

This example makes two different EVM measurements using two instances of comm.EVM.

• RMS EVM per packet, which comprises averaging the EVM over subcarriers, OFDM symbols, and
spatial streams.

• RMS EVM per subcarrier per spatial stream for a packet. Because this configuration maps spatial
streams directly to antennas, this measurement can help detect frequency-dependent
impairments, which may affect individual RF chains differently. This measurement averages the
EVM over OFDM symbols only.

 802.11ac Transmitter Measurements

8-49

% Setup EVM measurements
[EVMPerPkt,EVMPerSC] = vhtEVMSetup(cfgVHT);

This code configures objects and variables for processing.

% Get indices for accessing each field within the time-domain packet
ind = wlanFieldIndices(cfgVHT);

rxWaveformLength = size(rxWaveform,1);
pktLength = double(ind.VHTData(2));

% Define the minimum length of data we can detect; length of the L-STF in
% samples
minPktLen = double(ind.LSTF(2)-ind.LSTF(1))+1;

% Setup the measurement plots
[hSF,hCon,hEVM] = vhtTxSetupPlots(cfgVHT);

rmsEVM = zeros(numPackets,1);
pktOffsetStore = zeros(numPackets,1);

rng(savedState); % Restore random state

Detect and process packets within the received waveform, rxWaveform by using a while loop, which
performs these steps.

• Detect a packet by indexing into rxWaveform with the sample offset, searchOffset
• Detect and process the first packet within rxWaveform
• Detect and process the next packet by incrementing the sample index offset, searchOffset
• Repeat until no further packets are detected

pktNum = 0;
searchOffset = 0; % Start at first sample (no offset)
while (searchOffset+minPktLen)<=rxWaveformLength
 % Packet detect
 pktOffset = wlanPacketDetect(rxWaveform,cfgVHT.ChannelBandwidth);
 % Packet offset from start of waveform
 pktOffset = searchOffset+pktOffset;
 % If no packet detected or offset outwith bounds of waveform then stop
 if isempty(pktOffset) || (pktOffset<0) || ...
 ((pktOffset+ind.LSIG(2))>rxWaveformLength)
 break;
 end

 % Extract non-HT fields and perform coarse frequency offset correction
 % to allow for reliable symbol timing
 nonht = rxWaveform(pktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 coarsefreqOff = wlanCoarseCFOEstimate(nonht,cfgVHT.ChannelBandwidth);
 nonht = helperFrequencyOffset(nonht,fs,-coarsefreqOff);

 % Determine offset between the expected start of L-LTF and actual start
 % of L-LTF
 lltfOffset = wlanSymbolTimingEstimate(nonht,cfgVHT.ChannelBandwidth);
 % Determine packet offset
 pktOffset = pktOffset+lltfOffset;
 % If offset is without bounds of waveform skip samples and continue
 % searching within remainder of the waveform

8 Test and Measurement

8-50

 if (pktOffset<0) || ((pktOffset+pktLength)>rxWaveformLength)
 searchOffset = pktOffset+double(ind.LSTF(2))+1;
 continue;
 end

 % Timing synchronization complete; extract the detected packet
 rxPacket = rxWaveform(pktOffset+(1:pktLength),:);
 pktNum = pktNum+1;
 disp([' Packet ' num2str(pktNum) ' at index: ' num2str(pktOffset+1)]);

 % Apply coarse frequency correction to the extracted packet
 rxPacket = helperFrequencyOffset(rxPacket,fs,-coarsefreqOff);

 % Perform fine frequency offset correction on the extracted packet
 lltf = rxPacket(ind.LLTF(1):ind.LLTF(2),:); % Extract L-LTF
 fineFreqOff = wlanFineCFOEstimate(lltf,cfgVHT.ChannelBandwidth);
 rxPacket = helperFrequencyOffset(rxPacket,fs,-fineFreqOff);

 % Extract VHT-LTF samples, demodulate and perform channel estimation
 vhtltf = rxPacket(ind.VHTLTF(1):ind.VHTLTF(2),:);
 vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,cfgVHT);

 % Get single stream channel estimate
 chanEstSSPilots = vhtSingleStreamChannelEstimate(vhtltfDemod,cfgVHT);

 % Channel estimate
 chanEst = wlanVHTLTFChannelEstimate(vhtltfDemod,cfgVHT);

 % Perform IQ gain and phase imbalance estimation
 [gainEst,phaseEst,alphaEst,betaEst,gamma,dataRot] = ...
 helperIQImbalanceEstimate(chanEst,cfgVHT);
 fprintf(' Measured IQ gain & phase imbalance: %2.2f dB, %2.2f deg\n',gainEst,phaseEst);

 % Perform IQ gain and phase imbalance correction on channel
 % estimates
 chanEst = chanEst./(alphaEst + betaEst.*gamma); % As specified in Equation-29 of [5]

 % Spectral flatness measurement
 vhtTxSpectralFlatnessMeasurement(chanEst,cfgVHT,pktNum,hSF);

 % Extract VHT Data samples from the waveform
 vhtdata = rxPacket(ind.VHTData(1):ind.VHTData(2),:);

 % Estimate the noise power in VHT data field
 noiseVarVHT = vhtNoiseEstimate(vhtdata,chanEstSSPilots,cfgVHT);

 % Extract VHT Data samples and perform OFDM demodulation, equalization
 % and phase tracking
 [~,~,eqSym] = wlanVHTDataRecover(vhtdata,chanEst,noiseVarVHT,cfgVHT,...
 'EqualizationMethod','ZF','PilotPhaseTracking','PreEQ'); % Use zero forcing algorithm for equalization

 % Perform IQ gain and phase imbalance correction on VHT data
 eqSym = eqSym.*dataRot; % Carrier rotation on data subcarriers
 eqSym = ((conj(alphaEst)*eqSym)-(betaEst*conj(eqSym(end:-1:1,:,:))))/((abs(alphaEst)^2)-(abs(betaEst)^2)); % As specified in Equation-30 of [5]

 % Compute RMS EVM over all spatial streams for packet
 rmsEVM(pktNum) = EVMPerPkt(eqSym);
 fprintf(' RMS EVM: %2.2f%%, %2.2fdB\n',rmsEVM(pktNum),20*log10(rmsEVM(pktNum)/100));

 802.11ac Transmitter Measurements

8-51

 % Compute RMS EVM per subcarrier and spatial stream for the packet
 evmPerSC = EVMPerSC(eqSym); % Nst-by-1-by-Nss

 % Plot RMS EVM per subcarrier and equalized constellation
 vhtTxEVMConstellationPlots(eqSym,evmPerSC,cfgVHT,pktNum,hCon,hEVM);

 % Store the offset of each packet within the waveform
 pktOffsetStore(pktNum) = pktOffset;

 % Increment waveform offset and search remaining waveform for a packet
 searchOffset = pktOffset+pktLength+minPktLen;
end

if pktNum>0
 fprintf('Average EVM for %d packets: %2.2f%%, %2.2fdB\n', ...
 pktNum,mean(rmsEVM(1:pktNum)),20*log10(mean(rmsEVM(1:pktNum))/100));
else
 disp('No complete packet detected');
end

 Packet 1 at index: 41
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.38%, -29.43dB
 Packet 2 at index: 9801
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.14%, -30.05dB
 Packet 3 at index: 19561
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 2.96%, -30.56dB
 Packet 4 at index: 29321
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.09%, -30.20dB
 Packet 5 at index: 39081
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.03%, -30.36dB
 Packet 6 at index: 48841
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 2.73%, -31.27dB
 Packet 7 at index: 58601
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.00%, -30.46dB
 Packet 8 at index: 68361
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 2.89%, -30.79dB
 Packet 9 at index: 78121
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.02%, -30.39dB
 Packet 10 at index: 87881

8 Test and Measurement

8-52

 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 2.79%, -31.09dB
 Packet 11 at index: 97641
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 2.98%, -30.52dB
 Packet 12 at index: 107401
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.00%, -30.47dB
 Packet 13 at index: 117161
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 2.88%, -30.80dB
 Packet 14 at index: 126921
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 2.96%, -30.59dB
 Packet 15 at index: 136681
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.17%, -29.98dB
 Packet 16 at index: 146441
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 2.69%, -31.42dB
 Packet 17 at index: 156201
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.03%, -30.36dB
 Packet 18 at index: 165961
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.26%, -29.75dB
 Packet 19 at index: 175721
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.29%, -29.65dB
 Packet 20 at index: 185481
 Measured IQ gain & phase imbalance: 0.98 dB, 0.96 deg
 Spectral flatness passed
 RMS EVM: 3.27%, -29.72dB
Average EVM for 20 packets: 3.03%, -30.38dB

 802.11ac Transmitter Measurements

8-53

8 Test and Measurement

8-54

 802.11ac Transmitter Measurements

8-55

Transmit Spectrum Emission Mask Measurement

This section measures the spectral mask of the filtered and impaired waveform after high-power
amplifier modeling.

The transmitter spectral mask test [4] uses a time-gated spectral measurement of the VHT Data
field. The example extracts the VHT Data field of each packet from the oversampled waveform,
txWaveform, by using the start indices of each packet within the baseband waveform. Any delay
introduced in the baseband processing chain used to determine the packet indices must be accounted
for when gating the VHT data field within txWaveform. Concatenate the extracted VHT Data fields in
preparation for measurement.

startIdx = osf*(ind.VHTData(1)-1)+1; % Upsampled start of VHT Data
endIdx = osf*ind.VHTData(2); % Upsampled end of VHT Data
delay = grpdelay(decimationFilter,1); % Group delay of downsampling filter
idx = zeros(endIdx-startIdx+1,pktNum);
for i = 1:pktNum
 % Start of packet in txWaveform
 pktOffset = osf*pktOffsetStore(i)-delay;
 % Indices of VHT Data in txWaveform
 idx(:,i) = (pktOffset+(startIdx:endIdx));
end
gatedVHTData = txWaveform(idx(:),:);

The 802.11ac standard specifies the spectral mask relative to the peak power spectral density. The
helper function helperSpectralMaskTest generates a plot which overlays the required mask with the
measured PSD.

8 Test and Measurement

8-56

if pktNum>0
 helperSpectralMaskTest(gatedVHTData,fs,osf);
end

 Spectrum mask passed

Conclusion and Further Exploration

This example plots four results: spectral flatness, RMS EVM per subcarrier, equalized constellation,
and spectral mask.

The high-power amplifier model introduces significant inband distortion and spectral regrowth which
is visible in the EVM results, noisy constellation and out-of-band emissions in the spectral mask plot.
Try increasing the high-power amplifier backoff and note the improved EVM, constellation and lower
out-of-band emissions.

Try using different values for iqGaindB and iqPhaseDeg and note the impact on EVM and
constellation.

The spectral filtering and downsampling (to bring the waveform to baseband for processing) stages
include filtering. These filter responses affect the spectral flatness measurement. The ripple in the
spectral flatness measurement is mainly due to downsampling to baseband. Try using different filters
or filter lengths and note the impact on the spectral flatness.

 802.11ac Transmitter Measurements

8-57

Selected Bibliography

1 IEEE Std 802.11™-2016 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 Loc and Cheong. IEEE P802.11 Wireless LANs. TGac Functional Requirements and Evaluation
Methodology Rev. 16. 2011-01-19.

3 Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd Edition.
United Kingdom: Cambridge University Press, 2013.

4 Archambault, Jerry, and Shravan Surineni. "IEEE 802.11 spectral measurements using vector
signal analyzers." RF Design 27.6 (2004): 38-49.

5 M. Janaswamy, N. K. Chavali and S. Batabyal, "Measurement of transmitter IQ parameters in HT
and VHT wireless LAN systems," 2016 International Conference on Signal Processing and
Communications (SPCOM), Bangalore.

8 Test and Measurement

8-58

802.11ad Transmitter Spectral Emission Mask Testing
This example shows how to perform pulse shaping and spectrum emission mask testing on an IEEE®
802.11ad™ transmitted waveform.

Introduction

IEEE 802.11ad [1] standard, commonly referred to as directional multi-gigabit (DMG), provides data
throughput up to 7 Gbps using the 60 GHz industrial, scientific, and medical (ISM) frequency band.
The DMG standard supports three PHY types:

• A Control PHY using MCS 0
• A Single Carrier (SC) PHY using MCS 1 to MCS 12 and low power SC PHY using MCS 25 to MCS

32
• An OFDM PHY using MCS 13 to MCS 24.

DMG defines four 2.16 GHz wide operating channels, typically in the 57-66 GHz band. The spectral
mask test, as demonstrated in this example, ensures a transmission in one channel does not cause
substantial interference in adjacent channels. The DMG channelization is shown in the figure below.

The SC DMG PHY uses single carrier modulation for low cost, short range applications. This example
shows how pulse shaping and spectrum mask measurements can be performed on an SC DMG
modulated waveform. The waveform is generated using WLAN Toolbox™, but a waveform captured
with a spectrum analyzer could also be used. The transmitter spectrum mask and required spectral
flatness for DMG configuration is specified in IEEE 802.11ad [1], Section 20.3.2.

This example generates five DMG SC packets, each separated by a one microsecond gap. Random
data is used in each packet and pi/2-16QAM modulation is used. To meet the spectral mask
requirements, the baseband waveform is upsampled and filtered to reduce the out-of-band emissions.
A high power amplifier (HPA) model is used to introduce inband distortion and spectral regrowth. The
spectral emission mask measurement is performed on the upsampled waveform after the HPA
modeling. The test schematic is illustrated in the following diagram:

 802.11ad Transmitter Spectral Emission Mask Testing

8-59

DMG, Single Carrier Packet Configuration

In this example, an IEEE 802.11ad waveform consisting of multiple DMG SC packets is generated.
The DMG SC waveform properties are specified in a wlanDMGConfig configuration object. The
object is configured for an MCS index of 12, with no TrainingLength fields appended to the
packets. Per the test requirement (specified in IEEE 802.11ad Section 21.3.2), the PSDULength is set
to 20000 for the packet to ensure that the transmit spectral mask is measured on a DMG packet
longer than 10 microseconds.

cfgDMG = wlanDMGConfig; % DMG packet configuration
cfgDMG.MCS = 12; % SC PHY with pi/2-16QAM modulation
cfgDMG.PSDULength = 20000; % Length in Bytes

Baseband Waveform Generation

The waveform generator can be configured to generate one or more packets with idle time between
each packet. In this example, wlanWaveformGenerator is configured to generate five packets filled
with random payload data. Each packet is separated by a one microsecond idle period in between and
a random scrambler seed is used to generate each packet.

% Set random stream for repeatability of results
s = rng(98765);

% Generate a multi-packet waveform
idleTime = 1e-6; % One microsecond idle time between packets
numPackets = 5; % Generate five packets

% Create random bits for all payload data; PSDULength is in bytes
psdu = randi([0 1],cfgDMG.PSDULength*8*numPackets,1);

% Override the ScramblerInitialization property of the DMG configuration
% object by specifying the scrambler initialization
genWaveform = wlanWaveformGenerator(psdu,cfgDMG,...
 'IdleTime',idleTime, ...
 'NumPackets',numPackets, ...
 'ScramblerInitialization',randi([1 127],numPackets,1));

% Get the sampling rate of the waveform
fs = wlanSampleRate(cfgDMG);
disp(['Baseband sampling rate: ' num2str(fs/1e6) ' Msps']);

Baseband sampling rate: 1760 Msps

Oversampling and Filtering

Spectral filtering is used to reduce the out-of-band spectral emissions due to the spread spectrum
characteristics of the transmitted waveform and spectral regrowth caused by the HPA in an RF chain.
The waveform must be oversampled to model the effect of the HPA on the waveform and view the out-
of-band spectral emissions. In this example, the waveform is oversampled and filtered through a
raised cosine filter using comm.RaisedCosineTransmitFilter. To meet the spectral mask
requirements, the raised cosine filter is truncated to the duration of eight symbols and the roll-off
factor is set to 0.5.

% Define the pulse shaping filter characteristics
Nsym = 8; % Filter span in symbol durations
beta = 0.5; % Roll-off factor
osps = 4; % Output samples per symbol

8 Test and Measurement

8-60

% Create raised cosine transmit filter system object
rcosFlt = comm.RaisedCosineTransmitFilter(...
 'Shape','Normal', ...
 'RolloffFactor',beta, ...
 'FilterSpanInSymbols',Nsym, ...
 'OutputSamplesPerSymbol',osps);

% Filter transmit signal for pulse shaping
filterWaveform = rcosFlt([genWaveform; zeros(Nsym/2,1)]);

% Plot the magnitude and phase response of the pulse shaping filter
h = fvtool(rcosFlt,'Analysis','freq');
h.FS = osps*fs; % Set sampling rate
h.NormalizedFrequency = 'off'; % Plot responses against frequency

High Power Amplifier Modeling

Within an RF chain, the HPA is a necessary component but it introduces nonlinear behavior in the
form of inband distortion and spectral regrowth. The Rapp model, described in [2], can be used to
model an 802.11ad power amplifier. The Rapp model causes AM/AM distortion and is modeled with
comm.MemorylessNonlinearity. The HPA is backed-off to operate below the saturation point to
reduce distortion.

hpaBackoff = 0.5; % Power Amplifier backoff in dB

% Create and configure a memoryless nonlinearity to model HPA

 802.11ad Transmitter Spectral Emission Mask Testing

8-61

nonLinearity = comm.MemorylessNonlinearity;
nonLinearity.Method = 'Rapp model';
nonLinearity.Smoothness = 0.81; % Smoothness factor
nonLinearity.LinearGain = 10*log10(4.65) - hpaBackoff; % Small signal gain
nonLinearity.OutputSaturationLevel = 0.58; % Saturation level

% Apply the model
txWaveform = nonLinearity(filterWaveform);

Transmit Spectrum Emission Mask Measurement

IEEE 802.11ad [1], Section 20.3.2, specifies the transmit spectral mask that all DMG waveforms
must adhere to and describes the packet characteristics. According to the test definition, packets
should have no training fields appended and be greater than 10 microseconds in duration.

dBrLimits = [-30 -30 -22 -17 0 0 -17 -22 -30 -30];
fLimits = [-Inf -3.06 -2.7 -1.2 -0.94 0.94 1.2 2.7 3.06 Inf] * 1e3;
rbw = 1e6; % Resolution bandwidth in Hz
vbw = 300e3; % Video bandwidth in Hz

Use the helper function helperSpectralMaskTest to generate a plot that overlays the required
spectral mask with the measured PSD. It checks the transmitted PSD levels to be within the specified
mask levels and displays a pass/fail status after the test.

helperSpectralMaskTest(txWaveform,fs,osps,dBrLimits,fLimits,rbw,vbw);

% Restore default stream
rng(s);

 Spectrum mask passed

8 Test and Measurement

8-62

Conclusion and Further Exploration

The transmit spectral mask for a DMG SC waveform in the 60 GHz band for a 2.16 GHz channel
bandwidth is shown in this example. It also illustrates that the spectrum of the transmitted signal
satisfies regulatory restrictions by falling within the spectral mask after pulse shaping. A similar
result can be generated for DMG Control and OFDM PHYs.

The HPA model and the spectral filtering affect the out-of-band emissions in the spectral mask plot.
For Single Carrier and Control PHY, you can try using different pulse shaping filter parameters and/or
decrease or increase the smoothness factor.

For information on other transmitter measurements like modulation accuracy and spectral flatness,
refer to the following examples:

• “802.11ac Transmitter Measurements” on page 8-45
• “802.11p Spectral Emission Mask Testing” on page 8-65

Appendix

This example uses the following helper functions:

• helperSpectralMaskTest.m

 802.11ad Transmitter Spectral Emission Mask Testing

8-63

Selected Bibliography

1 IEEE Std 802.11™-2016: IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 Eldad Perahia, et. al. TGad Evaluation Methodology, IEEE 802.11-09/0296r16

8 Test and Measurement

8-64

802.11p Spectral Emission Mask Testing
This example shows how to perform spectrum emission mask tests for an IEEE® 802.11p™
transmitted waveform.

Introduction

IEEE 802.11p [2] is an approved amendment to the IEEE 802.11™ standard to enable support for
wireless access in vehicular environments (WAVE). Using the half-clocked mode with a 10 MHz
channel bandwidth, it operates at the 5.85-5.925 GHz bands for which additional spectral emission
masks are defined [Annex D of 1].

This example shows how spectral mask measurements can be performed on a transmitted waveform.
The waveform is generated with WLAN Toolbox™ for simplicity, but a waveform captured with a
spectrum analyzer could be used as well.

A waveform consisting of three 10 MHz IEEE 802.11p packets separated by a 32 microsecond gap is
generated. Random data is used for each packet and 16QAM modulation is used. The baseband
waveform is upsampled and filtered to reduce the out of band emissions thereby meeting the spectral
mask requirements. A high power amplifier (HPA) model is used, which introduces inband distortion
and spectral regrowth. The spectral emission mask measurement is performed on the upsampled
waveform after the high power amplifier modeling. The test schematic is illustrated in the following
diagram:

IEEE 802.11p non-HT Packet Configuration

In this example, an IEEE 802.11p waveform consisting of multiple non-HT format packets is
generated. Format parameters of the non-HT waveform are described using a non-HT format
configuration object. The object is created using the wlanNonHTConfig function. In this example,
the object is configured for a 10 MHz bandwidth operation as used by IEEE 802.11p.

cfgNHT = wlanNonHTConfig; % Create packet configuration
cfgNHT.ChannelBandwidth = 'CBW10'; % 10 MHz
cfgNHT.MCS = 4; % Modulation 16QAM, rate-1/2
cfgNHT.PSDULength = 1000; % PSDU length in bytes

Baseband Waveform Generation

The waveform generator can be configured to generate one or more packets and add an idle time
between each packet. In this example three packets with a 32 microsecond idle period will be
created. Random bits for all packets data are created and passed as an argument to
wlanWaveformGenerator along with the non-HT packet configuration object cfgNHT and additional
waveform generation parameters. cfgNHT configures the waveform generator to create the IEEE
802.11p non-HT waveform.

 802.11p Spectral Emission Mask Testing

8-65

% Set random stream for repeatability of results
s = rng(98765);

% Generate a multi-packet waveform
idleTime = 32e-6; % 32 microsecond idle time between packets
numPackets = 3; % Generate 3 packets

% Create random data; PSDULength is in bytes
data = randi([0 1], cfgNHT.PSDULength*8*numPackets, 1);

genWaveform = wlanWaveformGenerator(data, cfgNHT, ...
 'NumPackets', numPackets,...
 'IdleTime', idleTime);

% Get the sampling rate of the waveform
fs = wlanSampleRate(cfgNHT);
disp(['Baseband sampling rate: ' num2str(fs/1e6) ' Msps']);

Baseband sampling rate: 10 Msps

Oversampling and Filtering

Spectral filtering is used to reduce the out of band spectral emissions due to the implicit rectangular
pulse shaping in the OFDM modulation, and spectral regrowth caused by the high power amplifier in
an RF chain. To model the effect of a high power amplifier on the waveform and view the out of band
spectral emissions the waveform must be oversampled. In this example the waveform is oversampled
with an interpolation filter which also acts as a spectral filter. This allows the waveform to meet
spectral mask requirements. The waveform is oversampled and filtered using
dsp.FIRInterpolator.

% Oversample the waveform
osf = 3; % Oversampling factor
filterLen = 100; % Filter length
r = 50; % Design parameter for Chebyshev window (attenuation, dB)

% Generate filter coefficients and interpolate
coeffs = osf.*firnyquist(filterLen, osf, chebwin(filterLen+1, r));
coeffs = coeffs(1:end-1); % Remove trailing zero
interpolationFilter = dsp.FIRInterpolator(osf, 'Numerator', coeffs);
filtWaveform = interpolationFilter([genWaveform; zeros(filterLen/2,1)]);

% Plot the magnitude and phase response of the filter applied after
% oversampling
h = fvtool(interpolationFilter);
h.Analysis = 'freq'; % Plot magnitude and phase responses
h.FS = osf*fs; % Set sampling rate
h.NormalizedFrequency = 'off'; % Plot responses against frequency

8 Test and Measurement

8-66

High Power Amplifier Modeling

The high power amplifier introduces nonlinear behavior in the form of inband distortion and spectral
regrowth. This example simulates the power amplifiers by using the Rapp model in 802.11ac [2],
which introduces AM/AM distortion.

Model the amplifier by using comm.MemorylessNonlinearity object, and configure reduced
distortion by specifying a back-off, hpaBackoff, such that the amplifier operates below its saturation
point. You can increase the backoff to reduce EVM for higher MCS values.

pSaturation = 25; % Saturation power of a power amplifier in dBm
hpaBackoff = 16; % dB

% Create and configure a memoryless nonlinearity to model the amplifier
nonLinearity = comm.MemorylessNonlinearity;
nonLinearity.Method = 'Rapp model';
nonLinearity.Smoothness = 3; % p parameter
nonLinearity.LinearGain = -hpaBackoff; % dB
nonLinearity.OutputSaturationLevel = db2mag(pSaturation-30);

% Apply the model to the transmit waveform
txWaveform = nonLinearity(filtWaveform);

 802.11p Spectral Emission Mask Testing

8-67

Transmit Spectrum Emission Mask Measurement

Stations are classified according to the allowed maximum transmit powers (in mW). For the four
different classes of stations, four different spectral emission masks are defined [Annex D of 1]. The
spectral masks are defined relative to the peak power spectral density (PSD).

In this example the spectrum emission mask of the transmitted waveform after high power amplifier
modeling is measured for a Class A station.

% IEEE Std 802.11-2012 Annex D.2.3, Table D-5: Class A STA
dBrLimits = [-40 -40 -28 -20 -10 0 0 -10 -20 -28 -40 -40];
fLimits = [-Inf -15 -10 -5.5 -5 -4.5 4.5 5 5.5 10 15 Inf];

A time gated spectral measurement of the non-HT Data field is used for the transmitter spectrum
emission mask test [3]. The non-HT Data field of each packet is extracted from the upsampled
txWaveform using the start index of each packet. The extracted non-HT Data fields are concatenated
in preparation for measurement.

% Indices for accessing each field within the time-domain packet
ind = wlanFieldIndices(cfgNHT);
startIdx = osf*(ind.NonHTData(1)-1)+1; % Upsampled start of non-HT Data
endIdx = osf*ind.NonHTData(2); % Upsampled end of non-HT Data
idleNSamps = osf*idleTime/(1/fs); % Upsampled idle time samples
perPktLength = endIdx + idleNSamps;

idx = zeros(endIdx-startIdx+1, numPackets);
for i = 1:numPackets
 % Start of packet in txWaveform, accounting for the filter delay
 pktOffset = (i-1)*perPktLength+filterLen/2;
 % Indices of non-HT Data in txWaveform
 idx(:,i) = pktOffset+(startIdx:endIdx);
end
% Select the Data field for the individual packets
gatedNHTDataTx = txWaveform(idx(:),:);

The plot generated by the helper function helperSpectralMaskTest overlays the required spectral
mask with the measured PSD. It checks the transmitted PSD levels to be within the specified mask
levels and displays a pass/fail status after the test.

% Evaluate the PSD and check for compliance
helperSpectralMaskTest(gatedNHTDataTx, fs, osf, dBrLimits, fLimits);

% Restore default stream
rng(s);

 Spectrum mask passed

8 Test and Measurement

8-68

Conclusion and Further Exploration

The transmit spectral mask for Class A Stations at the 5.85-5.925 GHz bands for a 10 MHz channel
spacing is shown in this example. It is also shown how the peak spectral density of the transmitted
signal falls within the spectral mask to satisfy regulatory restrictions. A similar result can be
generated for the 5 MHz channel spacing.

The high power amplifier model and the spectral filtering affect the out-of-band emissions in the
spectral mask plot. For different station classes with higher relative dB values, try using different
filters or filter lengths and/or increase the backoff for lower emissions.

For information on other transmitter measurements like modulation accuracy and spectral flatness,
refer to the following example:

• “802.11ac Transmitter Measurements” on page 8-45

Selected Bibliography
1 IEEE Std 802.11-2012: IEEE Standard for Information technology - Telecommunications and

information exchange between systems - Local and metropolitan area networks - Specific
requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE, New York, NY, USA, 1999-2013.

2 IEEE Std 802.11p-2010: IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific

 802.11p Spectral Emission Mask Testing

8-69

requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, Amendment 6: Wireless Access in Vehicular Environments, IEEE, New York, NY,
USA, 2010.

3 Archambault, Jerry, and Shravan Surineni. "IEEE 802.11 spectral measurements using vector
signal analyzers." RF Design 27.6 (2004): 38-49.

8 Test and Measurement

8-70

Code Generation and Deployment

9

What is C Code Generation from MATLAB?
You can use WLAN Toolbox together with MATLAB® Coder™ to:

• Create a MEX file to speed up your MATLAB application.
• Generate ANSI®/ISO® compliant C/C++ source code that implements your MATLAB functions and

models.
• Generate a standalone executable that runs independently of MATLAB on your computer or

another platform.

In general, the code you generate using the toolbox is portable ANSI C code. In order to use code
generation, you need a MATLAB Coder license. For more information, see “Get Started with MATLAB
Coder” (MATLAB Coder).

Using MATLAB Coder
Creating a MATLAB Coder MEX file can substantially accelerate your MATLAB code. It is also a
convenient first step in a workflow that ultimately leads to completely standalone code. When you
create a MEX file, it runs in the MATLAB environment. Its inputs and outputs are available for
inspection just like any other MATLAB variable. You can then use MATLAB tools for visualization,
verification, and analysis.

The simplest way to generate MEX files from your MATLAB code is by using the codegen function at
the command line. For example, if you have an existing function, myfunction.m, you can type the
commands at the command line to compile and run the MEX function. codegen adds a platform-
specific extension to this name. In this case, the "mex" suffix is added.

codegen myfunction.m
myfunction_mex;

Within your code, you can run specific commands either as generated C code or by using the
MATLAB engine. In cases where an isolated command does not yet have code generation support,
you can use the coder.extrinsic command to embed the command in your code. This means that
the generated code reenters the MATLAB environment when it needs to run that particular
command. This is also useful if you want to embed commands that cannot generate code (such as
plotting functions).

To generate standalone executables that run independently of the MATLAB environment, create a
MATLAB Coder project inside the MATLAB Coder Integrated Development Environment (IDE).
Alternatively, you can call the codegen command in the command line environment with appropriate
configuration parameters. A standalone executable requires you to write your own main.c or
main.cpp function. See “Generating Standalone C/C++ Executables from MATLAB Code” (MATLAB
Coder) for more information.

C/C++ Compiler Setup
Before using codegen to compile your code, you must set up your C/C++ compiler. For 32-bit
Windows platforms, MathWorks® supplies a default compiler with MATLAB. If your installation does
not include a default compiler, you can supply your own compiler. For the current list of supported
compilers, see Supported and Compatible Compilers on the MathWorks website. Install a compiler
that is suitable for your platform, then read “Setting Up the C or C++ Compiler” (MATLAB Coder).

9 Code Generation and Deployment

9-2

https://www.mathworks.com/support/compilers.html

After installation, at the MATLAB command prompt, run mex -setup. You can then use the codegen
function to compile your code.

Functions and System Objects That Support Code Generation
All WLAN Toolbox functions and System objects support code generation.

See Also
Functions
codegen | mex

More About
• “Code Generation Workflow” (MATLAB Coder)
• Generate C Code from MATLAB Code Video

 What is C Code Generation from MATLAB?

9-3

https://www.mathworks.com/videos/generate-c-code-from-matlab-code-108233.html

Code Generation of WLAN Toolbox™ Features
This example shows how to generate MEX files and efficient C/C++ code for the WLAN Toolbox™
waveform generator function and verify its correct behaviour. Additionally, it shows how to work
around limitations of code generation for WLAN Toolbox channel models. All WLAN Toolbox functions
and System objects™ are supported for C/C++ code generation.

Introduction

With MATLAB Coder™, you can generate efficient, portable C source code, standalone executables,
and MEX functions for deployment in desktop and embedded applications. You can speed up your
MATLAB code using MEX functions or integrate generated source code and static or dynamic
libraries into your C/C++ code projects. See “Setting Up the C or C++ Compiler” (MATLAB Coder)
for more information about how to set up the C/C++ compiler. In order to use code generation, you
need a MATLAB Coder license.

This example uses the codegen function to generate code for the WLAN Toolbox waveform generator
and the TGax channel System object. First, prepare the required input arguments of the waveform
generator and configure MATLAB Coder to generate MEX files. Next, compare the output of the
generated MEX files and the original MATLAB code. Finally, the example shows how to work around
limitations of code generation affecting WLAN Toolbox.

Input Arguments Definition

For code generation, you must specify the size and type of the input arguments to your entry-point
function. In this case, you specify the input arguments of the wlanWaveformGenerator function and
packet format configuration object. The mandatory arguments of the waveform generator are the
data bits of the physical layer service data unit (PSDU) and the waveform format configuration.
Additional inputs such as the idle time, scrambler initialization, and window transition time depend
on the format configuration. Specify the additional inputs as name-value pairs. See
wlanWaveformGenerator for more information.

You can use example values of the input arguments and the codegen function automatically derives
their size, class, and complexity. However, the size of the input data vector depends on properties of
the format configuration such as the channel bandwidth and coding. Use the coder.typeof function
to define a variable-size input data vector that adapts to the format configuration properties as
required.

Thus, you can run the generated code for multiple parameter sets of the format configuration object.
For more information about specifying variable-size input arguments, see “Generate Code for
Variable-Size Data” (MATLAB Coder). In this case, specify only the first dimension as variable-size.

variableDims = [1 0];

Variable-size vectors can be upper bounded or unbounded. To allow for full flexibility, you can select
the upper bound to be the maximum aggregated MAC protocol data unit (A-MPDU) length, i.e.,
6500631 bytes.

upperBound = 6500631*8; % Upper bound in bits

Next, use coder.typeof to define an input type as a column vector of doubles with a maximum size
of upperBound-by-1, with the first dimension variable-size.

inputBits = coder.typeof(double(0),[upperBound 1],variableDims);

9 Code Generation and Deployment

9-4

As the inputBits data type is double, you can only use double-precision values for the input bits of
the generated MEX and C/C++ code.

Next, create a high-efficiency single-user (HE SU) format configuration object with default
parameters and its corresponding configuration structure using the coder.typeof function. Use
this structure to specify the type and size of any property of the HE SU format configuration object.

cfgHESU = wlanHESUConfig;
cfgHESUcg = coder.typeof(cfgHESU);

There are two possible forward-error-correction (FEC) coding types for the HE-Data: low-density
parity-check, specified by setting the ChannelCoding property of cfgHESU to 'LDPC', and binary
convolutional coding, specified as 'BCC'. Since these are character arrays of different lengths, use
the coder.typeof function to define a variable-length row vector of maximum size 1-by-4
characters.

cfgHESUcg.Properties.ChannelCoding = coder.typeof('LDPC',[1 4],[0 1]);

Use the same strategy for the channel bandwidth property. In this case, the longest character array
corresponds to 'CBW160', so six characters are enough to cover all other possible cases, i.e.,
'CBW20', 'CBW40', and 'CBW80'.

cfgHESUcg.Properties.ChannelBandwidth = coder.typeof('CBW160',[1 6],[0 1]);

Specify optional arguments of the waveform generator such as the windowing transition time using
name-value pairs. Use coder.Constant to define the name of the argument because it is a string
literal that is not expected to change.

WindowTransitionTime_Name = coder.Constant('WindowTransitionTime');

Use an example value from which the codegen function derives its type and size. This technique is
only suitable for fixed-size input arguments.

WindowTransitionTime_Value = 0;

Code Generation for the WLAN Toolbox Waveform Generator

Once the input arguments are specified for code generation, configure MATLAB Coder to generate
MEX files and C/C++ code. A MEX file acts as an interface to the generated C/C++ code that can run
in MATLAB. MEX file generation is usually the first step in the code generation workflow as it
provides a convenient way for verifying the generated C/C++ code.

You can generate a MEX file, C/C++ code, a dynamic library, or a standalone executable by creating a
MATLAB Coder configuration object and specifying the build type as 'MEX', 'LIB', 'DLL', or
'EXE', respectively.

BuildType = 'MEX';
cfgCoder = coder.config(BuildType);

Generate a report containing useful information about the code generation process.

cfgCoder.GenerateReport = true;

The name of the generated MEX file is the entry-point function name appended by the suffix 'mex',
that is, wlanWaveformGenerator_mex. To specify a different name for your MEX file, use the option
-o output_file_name. You can find the generated MEX files in your local folder and the generated
C/C++ code in the folder codegen\mex\wlanWaveformGenerator.

 Code Generation of WLAN Toolbox™ Features

9-5

Users of Microsoft Visual C++ product family may see the C4101 compiler warning indicating an
unreferenced local variable.

inputArgs = {inputBits,cfgHESUcg,WindowTransitionTime_Name,WindowTransitionTime_Value}; %#ok<NASGU>
codegen wlanWaveformGenerator -args inputArgs -config cfgCoder -o wlanWaveformGenerator_HESU_mex

Code generation successful: To view the report, open('codegen\mex\wlanWaveformGenerator\html\report.mldatx').

Next, verify that the generated MEX file behaves as expected when you use different configurations
of the ChannelBandwidth and ChannelCoding by comparing its output to that of the
wlanWaveformGenerator.

% Create a HE SU format configuration object specifying the channel
% bandwidth, coding, number of antennas and streams.
cfgHESU = wlanHESUConfig('ChannelBandwidth','CBW20','ChannelCoding','BCC', ...
 'NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

% Set the value of the window transition time
WindowTransitionTime = 1e-09;

% Create a PSDU of size defined by the getPSDULength function
inputBits = randi([0 1],getPSDULength(cfgHESU)*8,1);

% Run the wlanWaveformGenerator
waveformMAT = wlanWaveformGenerator(inputBits,cfgHESU,'WindowTransitionTime',WindowTransitionTime);

% Run the generated MEX file
waveformMEX = wlanWaveformGenerator_HESU_mex(inputBits,cfgHESU,'WindowTransitionTime',WindowTransitionTime);

% Compare the outputs of the wlanWaveformGenerator and generated MEX file
difference = waveformMAT - waveformMEX;

% Check the results are consistent
if max(abs(difference),[],'all') > 1e-10
 error('The MEX file generated does not produce the same results as wlanWaveformGenerator.')
else
 disp('The outputs of the generated MEX file and the wlanWaveformGenerator are equal.')
end

The outputs of the generated MEX file and the wlanWaveformGenerator are equal.

Additional Options for Code Generation

In addition to the reporting options used above, you can configure MATLAB Coder with more
advanced options.

• Generate C/C++ code only but do not build object code or MEX files setting
cfgCoder.GenCodeOnly = true. This can save time when you iterate between modifying
MATLAB code and inspecting the generated C/C++ code. To generate a MEX file, set this value to
false.

• Configure MATLAB Coder for optimized C/C++ code generation by setting
cfgCoder.BuildConfiguration = 'Faster Runs'. This option is available only for 'LIB',
'DLL', and 'EXE' build types.

See the coder.config (MATLAB Coder) reference page for more information.

9 Code Generation and Deployment

9-6

Limitations of Code Generation

“WLAN Channel Models” are System objects, which are designed specifically for implementing and
simulating dynamic systems with inputs that change over time. Consider these limitations for code
generation of System objects:

• Nontunable property values must be constant and can only be assigned once before a step
method is executed, including the assignment in the constructor.

• You cannot pass in a System object™ to an entry-point function.

See “System Objects in MATLAB Code Generation” (MATLAB Coder) for more information about
rules and limitations of System objects™ for code generation.

If you try to generate code for the entry-point function named hCustomChannelNT, which creates a
wlanTGaxChannel with a bandwidth specified by the input argument BW and filters the signal
inputSignal, the code generation process fails.

function signalOut = hCustomChannelNT(BW, signalIn)

 % Create a TGax channel with the appropriate bandwidth
 ch = wlanTGaxChannel('ChannelBandwidth',BW);
 % Filter the input signal
 signalOut = ch(signalIn);

end

The error message indicates: Failed to compute constant value for nontunable
property 'ChannelBandwidth'.

The ChannelBandwidth property of the wlanTGaxChannel object is not a constant value because it
depends on the input argument BW of the hCustomChannelNT function. You can work around this by
setting BW to be a constant value.

inputSignal = coder.typeof(complex(0),[Inf 1],[1 0]); %#ok<NASGU>
codegen hCustomChannelNT -args {coder.Constant('CBW160'),inputSignal};

Code generation successful.

However, if you specify a constant value for the channel bandwidth, you cannot change the channel
bandwidth at runtime. The following call hCustomChannelNT_mex('CBW20',inputSignal) fails
because the specified argument BW is not 'CBW160'. It is possible to work around this for a limited
variability of the input arguments using a switch-case block. The function hCustomChannel contains
a switch-case where each of the cases creates a wlanTGaxChannel with the appropriate channel
bandwidth.

function signalOut = hCustomChannel(ChannelBandwidth, signalIn)

 % Create a TGax channel with the appropriate bandwidth and filter the input signal
 switch ChannelBandwidth
 case 'CBW20'
 ch = wlanTGaxChannel('ChannelBandwidth','CBW20');
 signalOut = ch(signalIn);

 Code Generation of WLAN Toolbox™ Features

9-7

 case 'CBW40'
 ch = wlanTGaxChannel('ChannelBandwidth','CBW40');
 signalOut = ch(signalIn);
 case 'CBW80'
 ch = wlanTGaxChannel('ChannelBandwidth','CBW80');
 signalOut = ch(signalIn);
 case 'CBW160'
 ch = wlanTGaxChannel('ChannelBandwidth','CBW160');
 signalOut = ch(signalIn);
 otherwise
 error('Invalid bandwidth configuration.')
 end

end

Note that hCustomChannel creates a new channel object every time it is used, so it does not
preserve the state of the channel.

Next, generate code for hCustomChannel and select multiple channel bandwidths at runtime.

inputSignal = coder.typeof(complex(0),[Inf 1],[1 0]);
BW = coder.typeof('CBW160',[1 6],[0 1]);
inputArgs = {BW,inputSignal};
codegen hCustomChannel -args inputArgs

cfgHESU = wlanHESUConfig;
cfgHESU.ChannelBandwidth = 'CBW20';

inputSignal = wlanWaveformGenerator_HESU_mex([1 0 1]', cfgHESU,'WindowTransitionTime',0);

rng('default') % Set the default random number generator for reproduction purposes
outputSignalMEX = hCustomChannel_mex('CBW20',inputSignal);
rng('default')
outputSignalMAT = hCustomChannel('CBW20',inputSignal);

% Calculate the difference between the MEX and MATLAB files outputs
difference = outputSignalMAT - outputSignalMEX;

% Check the results are consistent
if max(abs(difference),[],'all') > 1e-10
 error('The generated MEX file does not produce the same results as hCustomChannel.')
else
 disp('The outputs of the generated MEX file and hCustomChannel are equal.')
end

Code generation successful.

The outputs of the generated MEX file and hCustomChannel are equal.

Change the channel bandwidth and pass the signal through the channel.

cfgHESU.ChannelBandwidth = 'CBW40';
inputSignal = wlanWaveformGenerator_HESU_mex([1 0 1]', cfgHESU,'WindowTransitionTime',0);

rng('default') % Set the default random number generator for reproduction purposes
outputSignalMEX = hCustomChannel_mex('CBW40',inputSignal);
rng('default')

9 Code Generation and Deployment

9-8

outputSignalMAT = hCustomChannel('CBW40',inputSignal);

% Calculate the difference between the MEX and MATLAB files outputs
difference = outputSignalMAT - outputSignalMEX;

% Check the results are consistent
if max(abs(difference),[],'all') > 1e-10
 error('The MEX file generated does not produce the same results as hCustomChannel.')
else
 disp('The outputs of the generated MEX file and hCustomChannel are equal.')
end

The outputs of the generated MEX file and hCustomChannel are equal.

Further Investigation

You can integrate the generated code with the SystemVerilog Direct Programming Interface (DPI) to
export MATLAB algorithms to ASIC or FPGA verification environments including Synopsys VCS®,
Cadence Incisive or Xcelium, and Mentor Graphics ModelSim or Questa. You can automatically
generate SystemVerilog DPI components from MATLAB functions using MATLAB Coder™ with HDL
Verifier™. The following workflow can be used with MATLAB functions that generate stimuli and
perform analysis or with a MATLAB function that is a behavioral golden reference for the DUT
(Device Under Test) in the ASIC or FPGA verification environment. See “SystemVerilog DPI
Component Generation” (HDL Verifier) (HDL Verifier) to learn more.

 Code Generation of WLAN Toolbox™ Features

9-9

Software-Defined Radio

10

802.11a Transmission and Reception Using Analog Devices
AD9361/AD9364

This example shows how to use the Xilinx® Zynq-based radio support package with MATLAB® and
WLAN Toolbox™ to generate a simultaneous transmission and reception on a single SDR platform.

Example Summary

WLAN Toolbox can be used to generate standard-compliant baseband IQ waveforms. These baseband
waveforms can be modulated for RF transmission using SDR radio hardware such as Xilinx Zynq-
based radio.

In this example, an image file is imported and packed into multiple WLAN packets of a baseband
waveform that is generated using WLAN Toolbox. A single antenna is used to generate an IEEE®
802.11a™ waveform. The RF WLAN waveform is then created, the baseband waveform is transferred
to the hardware memory on the Zynq radio and transmitted over the air.

The RF card used in this example is capable of simultaneous transmission and reception. Therefore,
the transmitted signal is captured using the same Zynq radio hardware platform. The diagram below
shows the setup used.

The receiver captures a number of WLAN packets and performs synchronization, channel estimation
and equalization to retrieve packet parameters. The data field is then extracted and the transmitted
payload is recovered using the retrieved packet parameters. After decoding the received waveform,
the transmitted image is recovered.

SDR Support Packages

This example requires the Xilinx Zynq-based radio support package. This can be installed using the
Add-On Explorer.

More information about other supported SDR platforms can be found here.

Full Example

The full example description and source code can be found in the list of examples using Xilinx Zynq-
Based Radio under the name "802.11a Transmission and Reception Using Analog Devices AD9361/
AD9364".

10 Software-Defined Radio

10-2

matlab:supportPackageInstaller
https://www.mathworks.com/hardware-support.html?fq=product:CM
https://www.mathworks.com/help/supportpkg/xilinxzynqbasedradio/examples.html
https://www.mathworks.com/help/supportpkg/xilinxzynqbasedradio/examples.html

802.11 OFDM Beacon Receiver with USRP® Hardware
This example shows how to use the Universal Software Radio Peripheral (USRP®) device using SDRu
(Software Defined Radio USRP®) System objects™ to implement a WLAN receiver. The receiver is
able to recover 802.11™ OFDM non-HT beacon frames transmitted over the air from commercial
802.11 hardware.

Example Summary

WLAN Toolbox™ provides functions and tools to decode 802.11 waveforms. This example shows how
to receive signals from commercial WLAN transmitters in MATLAB using USRP®. A receiver design
is demonstrated including synchronization, transmission configuration recovery, and payload
decoding for non-HT packets.

In this example, OFDM beacon packets corrupted by the transmission over the air are captured and
processed to recover the payload contents. To recover beacon packets the receiver performs packet
detection, symbol timing and frequency offset correction, and L-SIG and payload decoding. The
resulting payload bits are then evaluated to determine whether the payload is a beacon frame and the
contents are displayed as appropriate.

To view an example of a WLAN front end processing which does not require SDR hardware see
“802.11 OFDM Beacon Receiver with Captured Data” on page 4-41.

SDR Support Packages

This example requires the USRP®-based radio support package. This can be installed using the Add-
On Explorer.

More information about other supported SDR platforms can be found here.

Full Example

The full example description and source code can be found in the list of examples using USRP®
under the name "IEEE 802.11 WLAN - OFDM Beacon Receiver with USRP® Hardware".

Copyright Notice

Universal Software Radio Peripheral® and USRP® are trademarks of National Instruments Corp.

 802.11 OFDM Beacon Receiver with USRP® Hardware

10-3

matlab:supportPackageInstaller
matlab:supportPackageInstaller
https://www.mathworks.com/hardware-support.html?fq=product:CM
https://www.mathworks.com/help/supportpkg/usrpradio/examples.html

Transmission and Reception of an Image Using WLAN Toolbox
and a Single USRP® E310

This example shows how to transmit and receive WLAN packets on a single radio platform, USRP®
Embedded Series Radio Support Package with MATLAB® and WLAN Toolbox™. An image file is
encoded and packed into WLAN packets for transmission, and subsequently decoded on reception.

Example Summary

WLAN Toolbox can be used to generate standard-compliant baseband IQ waveforms. These baseband
waveforms can be modulated for RF transmission using SDR radio hardware such as USRP® E310
radio.

In this example, an image file is imported and packed into multiple WLAN packets of a baseband
waveform that is generated using WLAN Toolbox. A single antenna is used to generate an IEEE®
802.11a™ waveform. The RF WLAN waveform is then created, the baseband waveform is transferred
to the hardware memory on the USRP® E310 radio and transmitted over the air.

The Repeated Waveform Transmitter functionality with the USRP® Embedded Series radio hardware,
allows a waveform to be transmitted over the air and is received using the same SDR hardware. The
diagram below shows the setup used.

The receiver captures a number of WLAN packets and performs synchronization, channel estimation
and equalization to retrieve packet parameters. The data field is then extracted and the transmitted
payload is recovered using the retrieved packet parameters. After decoding the received waveform,
the transmitted image is recovered.

SDR Support Packages

This example requires the Support Package for USRP® Embedded Series Radio. This can be installed
using the Add-On Explorer.

More information about other supported SDR platforms can be found here.

Full Example

The full example description and source code can be found in the list of examples using USRP®
Embedded Series Radio under the name "Transmission and Reception of an Image Using WLAN
Toolbox and a Single USRP® E310".

10 Software-Defined Radio

10-4

matlab:supportPackageInstaller
https://www.mathworks.com/hardware-support.html?fq=product:CM
https://www.mathworks.com/help/supportpkg/usrpembeddedseriesradio/examples.html
https://www.mathworks.com/help/supportpkg/usrpembeddedseriesradio/examples.html

Image Transmission and Reception Using WLAN Toolbox and
One PlutoSDR

This example shows how to transmit and receive WLAN packets on a single PlutoSDR device, using
the Communications Toolbox™ Support Package for ADALM-PLUTO Radio and the WLAN Toolbox™.
An image file is encoded and packed into WLAN packets for transmission, and subsequently decoded
on reception.

Example Summary

WLAN Toolbox can be used to generate standard-compliant baseband IQ waveforms. These baseband
waveforms can be modulated for RF transmission using SDR radio hardware such as PlutoSDR.

In this example, an image file is imported and packed into multiple WLAN packets of a baseband
waveform that is generated using WLAN Toolbox. A single antenna is used to generate an IEEE®
802.11a™ waveform. The RF WLAN waveform is then created, the baseband waveform is transferred
to the hardware memory on the PlutoSDR and transmitted over the air.

The Repeated Waveform Transmitter functionality with the PlutoSDR allows a waveform to be
transmitted over the air and is received using the same SDR hardware. The diagram below shows the
setup used.

The receiver captures a number of WLAN packets and performs synchronization, channel estimation
and equalization to retrieve packet parameters. The data field is then extracted and the transmitted
payload is recovered using the retrieved packet parameters. After decoding the received waveform,
the transmitted image is recovered.

SDR Support Packages

This example requires the Support Package for ADALM-PLUTO Radio. This can be installed using the
Add-On Explorer.

More information about other supported SDR platforms can be found here.

Full Example

The full example description and source code can be found in the list of examples using ADALM-
PLUTO Radio under the name "Image Transmission and Reception Using WLAN Toolbox and One
PlutoSDR".

 Image Transmission and Reception Using WLAN Toolbox and One PlutoSDR

10-5

matlab:supportPackageInstaller
https://www.mathworks.com/hardware-support.html?fq=product:CM
https://www.mathworks.com/help/supportpkg/plutoradio/examples.html
https://www.mathworks.com/help/supportpkg/plutoradio/examples.html

	PHY Modeling
	802.11az Waveform Generation
	Build VHT PPDU
	Generate VHT Multi-User Waveform
	Build S1G PPDU
	Build DMG PPDU
	Build HT PPDU
	Build Non-HT PPDU
	Basic VHT Data Recovery
	802.11ax Parameterization for Waveform Generation and Simulation
	Basic WLAN Link Modeling
	802.11ac Multi-User MIMO Precoding

	MAC Modeling
	802.11 MAC Frame Generation
	802.11 MAC Frame Decoding
	802.11ac Waveform Generation with MAC Frames
	802.11 OFDM Beacon Frame Generation

	Signal Transmission
	802.11be 4096-QAM 320 MHz Waveform Generation and Analysis
	802.11ad Waveform Generation with Beamforming
	802.11ac Transmit Beamforming
	802.11ah Waveform Generation
	802.11n Link in Simulink

	Signal Reception
	Recover and Analyze Packets in 802.11 Waveform
	Recovery Procedure for an 802.11ax Packet
	Recovery Procedure for an 802.11ac Packet
	802.11 OFDM Beacon Receiver with Captured Data
	Joint Sampling Rate and Carrier Frequency Offset Tracking
	Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel
	End-to-End VHT Simulation with Frequency Correction

	Propagation Channel Models
	802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay Channel
	802.11ac Packet Error Rate Simulation for 8x8 TGac Channel
	802.11n Packet Error Rate Simulation for 2x2 TGn Channel
	802.11ah Packet Error Rate Simulation for 2x2 TGah Channel
	Delay Profile and Fluorescent Lighting Effects

	End-to-End Simulation
	802.11ax Packet Error Rate Simulation for Single-User Format
	802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation
	802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format
	802.11ax Compressed Beamforming Packet Error Rate Simulation
	802.11ax Feedback Status Misdetection Simulation for Uplink Trigger-Based Feedback NDP
	Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning
	802.11az Positioning Using Super-Resolution Time of Arrival Estimation
	802.11ad Packet Error Rate Simulation for Control PHY
	802.11ad Packet Error Rate Simulation for OFDM PHY
	802.11ad Single Carrier Link with RF Beamforming in Simulink
	802.11p Packet Error Rate Simulation for a Vehicular Channel
	802.11 Dynamic Rate Control Simulation

	System-Level Simulation
	802.11ax Multinode System-Level Simulation of Residential Scenario Using MATLAB
	Spatial Reuse with BSS Coloring in 802.11ax Residential Scenario
	802.11 MAC and Application Throughput Measurement
	802.11 MAC QoS Traffic Scheduling
	802.11ax System-Level Simulation with Physical Layer Abstraction
	Multi-Node 802.11a Network Modeling with PHY and MAC
	802.11ax PHY-Focused System-Level Simulation
	Physical Layer Abstraction for System-Level Simulation
	802.11ax Downlink Throughput Comparison of OFDM and OFDMA Through System-level Simulation
	Generate and Visualize FTP Application Traffic Pattern

	Test and Measurement
	Modeling and Testing an 802.11ax RF Receiver with 5G Interference
	Modeling and Testing an 802.11ax RF Transmitter
	802.11ac Receiver Minimum Input Sensitivity Test
	802.11ac Transmitter Measurements
	802.11ad Transmitter Spectral Emission Mask Testing
	802.11p Spectral Emission Mask Testing

	Code Generation and Deployment
	What is C Code Generation from MATLAB?
	Using MATLAB Coder
	C/C++ Compiler Setup
	Functions and System Objects That Support Code Generation

	Code Generation of WLAN Toolbox™ Features

	Software-Defined Radio
	802.11a Transmission and Reception Using Analog Devices AD9361/AD9364
	802.11 OFDM Beacon Receiver with USRP® Hardware
	Transmission and Reception of an Image Using WLAN Toolbox and a Single USRP® E310
	Image Transmission and Reception Using WLAN Toolbox and One PlutoSDR

